Abstract
1. A radiometric high performance liquid chromatographic method is described for the assay of theophylline metabolism in vitro by the microsomal fraction of human liver. 2. Formation of the three metabolites of theophylline (3-methylxanthine, 1-methylxanthine and 1,3-dimethyluric acid) were linear with protein concentrations to 4 mg ml-1 and with incubation times up to 180 min. 3. The coefficients of variation for the formation of 3-methylxanthine, 1-methylxanthine and 1,3-dimethyluric acid were 1.2%, 1% and 1.6%, respectively. 4. Theophylline is metabolised by microsomal enzymes with a requirement for NADPH. 5. The mean (n = 7) Km values for 1-demethylation, 3-demethylation and 8-hydroxylation were 545, 630 and 788 microM, respectively, and the mean Vmax values were 2.65, 2.84 and 11.23 pmol min-1 mg-1, respectively. 6. There was a high correlation between the Km and Vmax values for the two demethylation pathways suggesting that the demethylations are performed by the same enzyme. 7. Overall the in vitro studies are consistent with the in vivo results which suggest the involvement of two cytochrome P-450 isozymes in the metabolism of theophylline.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birkett D. J., Miners J. O., Attwood J. Secondary metabolism of theophylline biotransformation products in man--route of formation of 1-methyluric acid. Br J Clin Pharmacol. 1983 Jan;15(1):117–119. doi: 10.1111/j.1365-2125.1983.tb01475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CORNISH H. H., CHRISTMAN A. A. A study of the metabolism of theobromine, theophylline, and caffeine in man. J Biol Chem. 1957 Sep;228(1):315–323. [PubMed] [Google Scholar]
- Cresteil T., Beaune P., Kremers P., Celier C., Guengerich F. P., Leroux J. P. Immunoquantification of epoxide hydrolase and cytochrome P-450 isozymes in fetal and adult human liver microsomes. Eur J Biochem. 1985 Sep 2;151(2):345–350. doi: 10.1111/j.1432-1033.1985.tb09107.x. [DOI] [PubMed] [Google Scholar]
- Dahlqvist R., Billing B., Miners J. O., Birkett D. J. Nonlinear metabolic disposition of theophylline. Ther Drug Monit. 1984;6(3):290–297. doi: 10.1097/00007691-198409000-00006. [DOI] [PubMed] [Google Scholar]
- Grygiel J. J., Birkett D. J. Cigarette smoking and theophylline clearance and metabolism. Clin Pharmacol Ther. 1981 Oct;30(4):491–496. doi: 10.1038/clpt.1981.193. [DOI] [PubMed] [Google Scholar]
- Grygiel J. J., Miners J. O., Drew R., Birkett D. J. Differential effects of cimetidine on theophylline metabolic pathways. Eur J Clin Pharmacol. 1984;26(3):335–340. doi: 10.1007/BF00548764. [DOI] [PubMed] [Google Scholar]
- Grygiel J. J., Wing L. M., Farkas J., Birkett D. J. Effects of allopurinol on theophylline metabolism and clearance. Clin Pharmacol Ther. 1979 Nov;26(5):660–667. doi: 10.1002/cpt1979265660. [DOI] [PubMed] [Google Scholar]
- Guengerich F. P., Dannan G. A., Wright S. T., Martin M. V., Kaminsky L. S. Purification and characterization of liver microsomal cytochromes p-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta-naphthoflavone. Biochemistry. 1982 Nov 9;21(23):6019–6030. doi: 10.1021/bi00266a045. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lohmann S. M., Miech R. P. Theophylline metabolism by the rat liver microsomal system. J Pharmacol Exp Ther. 1976 Jan;196(1):213–225. [PubMed] [Google Scholar]
- McManus M. E., Stupans I., Burgess W., Koenig J. A., Hall P. M., Birkett D. J. Flavin-containing monooxygenase activity in human liver microsomes. Drug Metab Dispos. 1987 Mar-Apr;15(2):256–261. [PubMed] [Google Scholar]
- Meier U. T., Dayer P., Malè P. J., Kronbach T., Meyer U. A. Mephenytoin hydroxylation polymorphism: characterization of the enzymatic deficiency in liver microsomes of poor metabolizers phenotyped in vivo. Clin Pharmacol Ther. 1985 Nov;38(5):488–494. doi: 10.1038/clpt.1985.213. [DOI] [PubMed] [Google Scholar]
- Miners J. O., Wing L. M., Lillywhite K. J., Robson R. A. Selectivity and dose-dependency of the inhibitory effect of propranolol on theophylline metabolism in man. Br J Clin Pharmacol. 1985 Sep;20(3):219–223. doi: 10.1111/j.1365-2125.1985.tb05064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
- Ogilvie R. I. Clinical pharmacokinetics of theophylline. Clin Pharmacokinet. 1978 Jul-Aug;3(4):267–293. doi: 10.2165/00003088-197803040-00002. [DOI] [PubMed] [Google Scholar]
- Robson R. A., Miners J. O., Wing L. M., Birkett D. J. Theophylline-rifampicin interaction: non-selective induction of theophylline metabolic pathways. Br J Clin Pharmacol. 1984 Sep;18(3):445–448. doi: 10.1111/j.1365-2125.1984.tb02487.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang P. P., Beaune P., Kaminsky L. S., Dannan G. A., Kadlubar F. F., Larrey D., Guengerich F. P. Purification and characterization of six cytochrome P-450 isozymes from human liver microsomes. Biochemistry. 1983 Nov 8;22(23):5375–5383. doi: 10.1021/bi00292a019. [DOI] [PubMed] [Google Scholar]
