Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1988 Feb;25(2):195–201. doi: 10.1111/j.1365-2125.1988.tb03291.x

The effect of carbidopa and indomethacin on the renal response to gamma-L-glutamyl-L-dopa in normal man.

R F Jeffrey 1, T M MacDonald 1, K Marwick 1, M R Lee 1
PMCID: PMC1386474  PMID: 3129006

Abstract

1. The renal response to gamma-L-glutamyl-L-dopa (gludopa, 25 micrograms kg-1 min-1) was investigated in seven normal male volunteers. The effects of oral carbidopa (100 mg) and indomethacin (100 mg) on the response to gludopa were studied in the same group. 2. Gludopa at this dose level produced a 900-fold increase in urine dopamine excretion and caused a natriuresis and suppression of plasma renin activity with only minor effects on pulse rate and blood pressure. 3. Carbidopa inhibited the increase in dopamine excretion by 97% and abolished the renal actions of gludopa. 4. The increase in urine dopamine produced by gludopa was not altered by indomethacin and the urine sodium output was similar to that caused by gludopa alone. 5. Gludopa is an effective renal dopamine prodrug whose activity can be blocked by the dopa decarboxylase inhibitor carbidopa. The results with indomethacin suggest that dopamine and the prostaglandins form separate natriuretic systems in the kidney.

Full text

PDF
195

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERT Z., ORLOWSKI M., SZEWCZUK A. Histochemical demonstration of gamma-glutamyl transpeptidase. Nature. 1961 Aug 19;191:767–768. doi: 10.1038/191767a0. [DOI] [PubMed] [Google Scholar]
  2. ANTON A. H., SAYRE D. F. THE DISTRIBUTION OF DOPAMINE AND DOPA IN VARIOUS ANIMALS AND A METHOD FOR THEIR DETERMINATION IN DIVERSE BIOLOGICAL MATERIAL. J Pharmacol Exp Ther. 1964 Sep;145:326–336. [PubMed] [Google Scholar]
  3. Amundsen E., Putter J., Friberger P., Knos M., Larsbraten M., Claeson G. Methods for the determination of glandular kallikrein by means of a chromogenic tripeptide substrate. Adv Exp Med Biol. 1979;120A:83–95. doi: 10.1007/978-1-4757-0926-1_9. [DOI] [PubMed] [Google Scholar]
  4. Baines A. D., Chan W. Production of urine free dopamine from DOPA; a micropuncture study. Life Sci. 1980 Jan 28;26(4):253–259. doi: 10.1016/0024-3205(80)90334-3. [DOI] [PubMed] [Google Scholar]
  5. Bello-Reuss E., Higashi Y., Kaneda Y. Dopamine decreases fluid reabsorption in straight portions of rabbit proximal tubule. Am J Physiol. 1982 Jun;242(6):F634–F640. doi: 10.1152/ajprenal.1982.242.6.F634. [DOI] [PubMed] [Google Scholar]
  6. Brown M. J., Allison D. J. Renal conversion of plasma DOPA to urine dopamine. Br J Clin Pharmacol. 1981 Aug;12(2):251–253. doi: 10.1111/j.1365-2125.1981.tb01210.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cannella G., Galva M. D., Campanini M., Cesura A. M., De Marinis S., Picotti G. B. Sequential changes in plasma renin activity and plasma catecholamines in mildly hypertensive patients during acute, furosemide-induced body-fluid loss. Eur J Clin Pharmacol. 1983;25(3):299–302. doi: 10.1007/BF01037937. [DOI] [PubMed] [Google Scholar]
  8. Dressler W. E., Rossi G. V., Orzechowski R. F. Evidence that renal vasodilation by dopamine in dogs does not involve release of prostaglandin. J Pharm Pharmacol. 1975 Mar;27(3):203–204. doi: 10.1111/j.2042-7158.1975.tb09440.x. [DOI] [PubMed] [Google Scholar]
  9. FREIS E. D., ROSE J. C., HIGGINS T. F., FINNERTY F. A., Jr, KELLEY R. T., PARTENOPE E. A. The hemodynamic effects of hypotensive drugs in man. IV. 1-Hydrazinophthalazine. Circulation. 1953 Aug;8(2):199–204. doi: 10.1161/01.cir.8.2.199. [DOI] [PubMed] [Google Scholar]
  10. Felder R. A., Blecher M., Calcagno P. L., Jose P. A. Dopamine receptors in the proximal tubule of the rabbit. Am J Physiol. 1984 Sep;247(3 Pt 2):F499–F505. doi: 10.1152/ajprenal.1984.247.3.F499. [DOI] [PubMed] [Google Scholar]
  11. Goldberg L. I., Glock D., Kohli J. D., Barnett A. Separation of peripheral dopamine receptors by a selective DA1 antagonist, SCH 23390. Hypertension. 1984 Mar-Apr;6(2 Pt 2):I25–I30. doi: 10.1161/01.hyp.6.2_pt_2.i25. [DOI] [PubMed] [Google Scholar]
  12. Goldstein M., Fuxe K., Hökfelt T. Characterization and tissue localization of catecholamine synthesizing enzymes. Pharmacol Rev. 1972 Jun;24(2):293–309. [PubMed] [Google Scholar]
  13. Güllner H. G., Lakatua D. J., Bartter F. C. Effect of inhibition of prostaglandin synthesis on urinary free dopamine excretion in women. Clin Sci (Lond) 1982 Feb;62(2):209–213. doi: 10.1042/cs0620209. [DOI] [PubMed] [Google Scholar]
  14. Haber E., Koerner T., Page L. B., Kliman B., Purnode A. Application of a radioimmunoassay for angiotensin I to the physiologic measurements of plasma renin activity in normal human subjects. J Clin Endocrinol Metab. 1969 Oct;29(10):1349–1355. doi: 10.1210/jcem-29-10-1349. [DOI] [PubMed] [Google Scholar]
  15. Lee M. R. Dopamine and the kidney. Clin Sci (Lond) 1982 May;62(5):439–448. doi: 10.1042/cs0620439. [DOI] [PubMed] [Google Scholar]
  16. Lokhandwala M. F., Barrett R. J. Cardiovascular dopamine receptors: physiological, pharmacological and therapeutic implications. J Auton Pharmacol. 1982 Sep;2(3):189–215. doi: 10.1111/j.1474-8673.1982.tb00489.x. [DOI] [PubMed] [Google Scholar]
  17. Mackay I. G., Muir A. L., Watson M. L. Contribution of prostaglandins to the systemic and renal vascular response to frusemide in normal man. Br J Clin Pharmacol. 1984 May;17(5):513–519. doi: 10.1111/j.1365-2125.1984.tb02383.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mills I. H., Obika L. F. Increased urinary kallikrein excretion during prostaglandin E1 infusion in anaesthetized dogs and its relation to natriuresis and diuresis. J Physiol. 1977 Dec;273(2):459–474. doi: 10.1113/jphysiol.1977.sp012104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mills I. H. The renal kallikrein-kinin system and sodium excretion. Q J Exp Physiol. 1982 Jul;67(3):393–399. doi: 10.1113/expphysiol.1982.sp002654. [DOI] [PubMed] [Google Scholar]
  20. Robertson M. J., Horn N. M., Chapman B. J. The depressor and renal vasodilator responses to dopamine in the rat do not depend on prostaglandin biosynthesis. J Pharm Pharmacol. 1980 Nov;32(11):782–785. doi: 10.1111/j.2042-7158.1980.tb13067.x. [DOI] [PubMed] [Google Scholar]
  21. Rumpf K. W., Frenzel S., Lowitz H. D., Scheler F. The effect of indomethacin on plasma renin activity in man under normal conditions and after stimulation of the renin angiotensin system. Prostaglandins. 1975 Oct;10(4):641–648. doi: 10.1016/s0090-6980(75)80011-6. [DOI] [PubMed] [Google Scholar]
  22. Smith W. L., Bell T. G. Immunohistochemical localization of the prostaglandin-forming cyclooxygenase in renal cortex. Am J Physiol. 1978 Nov;235(5):F451–F457. doi: 10.1152/ajprenal.1978.235.5.F451. [DOI] [PubMed] [Google Scholar]
  23. Worth D. P., Harvey J. N., Brown J., Lee M. R. gamma-L-Glutamyl-L-dopa is a dopamine pro-drug, relatively specific for the kidney in normal subjects. Clin Sci (Lond) 1985 Aug;69(2):207–214. doi: 10.1042/cs0690207. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES