Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1988 Apr;25(4):487–494. doi: 10.1111/j.1365-2125.1988.tb03333.x

N-acetylation polymorphism of dapsone in a Japanese population.

Y Horai 1, T Ishizaki 1
PMCID: PMC1387811  PMID: 3382590

Abstract

1. The N-acetylation of dapsone (DDS) was studied in 182 unrelated healthy Japanese subjects. The frequency of slow acetylators determined using the plasma monoacetyldapsone (MADDS) to DDS ratio (MADDS/DDS, slow acetylators less than 0.30 and rapid acetylators greater than 0.35) at 3 h after an oral dose of DDS (100 mg) was 6.6% (12 of the 182 subjects) with a 95% confidence interval of 3.8 to 11.2%. 2. The frequency distribution histogram of the plasma MADDS/DDS ratio showed an apparent trimodal pattern. However, the numbers of heterozygous (n = 105) and homozygous rapid acetylators (n = 65) derived from the observed data did not agree with those predicted for the respective rapid acetylators (n = 70, and n = 100) by applying the Hardy-Weinberg Law, when the suggested antimode of 0.85 discriminating these two rapid acetylators was employed. 3. The incidence of slow acetylators was unexpectedly lower in the males (1.4%, 1 of the 69 subjects, with a 95% confidence interval of 0.2 to 7.7%) compared with the incidence in the females (9.7%, 11 of the 113 subjects, with a 95% confidence interval of 5.5 to 16.6%). The difference reached a marginally significant level (Fisher's exact probability test, P = 0.02). 4. The mean plasma concentration of MADDS was significantly (P less than 0.001) lower in the slow compared to the rapid acetylators and there was a highly significant correlation (rs = 0.757, P less than 0.001) between plasma MADDS levels and MADDS/DDS ratios. 5. Slow acetylators showed a significantly (P less than 0.001) lower urinary MADDS/DDS ratio and excreted less (P less than 0.001) MADDS than rapid acetylators.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
487

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad R. A., Rogers H. J. Plasma and salivary pharmacokinetics of dapsone estimated by a thin layer chromatographic method. Eur J Clin Pharmacol. 1980 Feb;17(2):129–133. doi: 10.1007/BF00562621. [DOI] [PubMed] [Google Scholar]
  2. Carr K., Oates J. A., Nies A. S., Woosley R. L. Simultaneous analysis of dapsone and monoacetyldapsone employing high performance liquid chromatography: a rapid method for determination of acetylator phenotype. Br J Clin Pharmacol. 1978 Nov;6(5):421–427. doi: 10.1111/j.1365-2125.1978.tb04606.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cartwright R. A., Glashan R. W., Rogers H. J., Ahmad R. A., Barham-Hall D., Higgins E., Kahn M. A. Role of N-acetyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet. 1982 Oct 16;2(8303):842–845. doi: 10.1016/s0140-6736(82)90810-8. [DOI] [PubMed] [Google Scholar]
  4. Chapron D. J., Kramer P. A., Mercik S. A. Kinetic discrimination of three sulfamethazine acetylation phenotypes. Clin Pharmacol Ther. 1980 Jan;27(1):104–113. doi: 10.1038/clpt.1980.16. [DOI] [PubMed] [Google Scholar]
  5. Clark D. W. Genetically determined variability in acetylation and oxidation. Therapeutic implications. Drugs. 1985 Apr;29(4):342–375. doi: 10.2165/00003495-198529040-00003. [DOI] [PubMed] [Google Scholar]
  6. Drayer D. E., Reidenberg M. M. Clinical consequences of polymorphic acetylation of basic drugs. Clin Pharmacol Ther. 1977 Sep;22(3):251–258. doi: 10.1002/cpt1977223251. [DOI] [PubMed] [Google Scholar]
  7. EVANS D. A., MANLEY K. A., McKUSICK V. A. Genetic control of isoniazid metabolism in man. Br Med J. 1960 Aug 13;2(5197):485–491. doi: 10.1136/bmj.2.5197.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evans D. A. Ethnic differences in reactions to drugs and xenobiotics. Acetylation. Prog Clin Biol Res. 1986;214:209–242. [PubMed] [Google Scholar]
  9. Evans D. A. Survey of the human acetylator polymorphism in spontaneous disorders. J Med Genet. 1984 Aug;21(4):243–253. doi: 10.1136/jmg.21.4.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gelber R., Peters J. H., Gordon G. R., Glazko A. J., Levy L. The polymorphic acetylation of dapsone in man. Clin Pharmacol Ther. 1971 Mar-Apr;12(2):225–238. doi: 10.1002/cpt1971122part1225. [DOI] [PubMed] [Google Scholar]
  11. Grant D. M., Tang B. K., Kalow W. A simple test for acetylator phenotype using caffeine. Br J Clin Pharmacol. 1984 Apr;17(4):459–464. doi: 10.1111/j.1365-2125.1984.tb02372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hanson A., Melander A., Wåhlin-Boll E. Acetylator phenotyping: a comparison of the isoniazid and dapsone tests. Eur J Clin Pharmacol. 1981;20(3):233–234. doi: 10.1007/BF00544604. [DOI] [PubMed] [Google Scholar]
  13. Horai Y., Ishizaki T. Rapid and sensitive liquid chromatographic method for the determination of dapsone and monoacetyldapsone in plasma and urine. J Chromatogr. 1985 Dec 13;345(2):447–452. doi: 10.1016/0378-4347(85)80187-0. [DOI] [PubMed] [Google Scholar]
  14. Horai Y., Ishizaki T., Sasaki T., Koya G., Matsuyama K., Iguchi S. Isoniazid disposition, comparison of isoniazid phenotyping methods in and acetylator distribution of Japanese patients with idiopathic systemic lupus erythematosus and control subjects. Br J Clin Pharmacol. 1982 Mar;13(3):361–374. doi: 10.1111/j.1365-2125.1982.tb01387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horai Y., Zhou H. H., Zhang L. M., Ishizaki T. N-acetylation phenotyping with dapsone in a mainland Chinese population. Br J Clin Pharmacol. 1988 Jan;25(1):81–87. doi: 10.1111/j.1365-2125.1988.tb03285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Iselius L., Evans D. A. Formal genetics of isoniazid metabolism in man. Clin Pharmacokinet. 1983 Nov-Dec;8(6):541–544. doi: 10.2165/00003088-198308060-00005. [DOI] [PubMed] [Google Scholar]
  17. Ishizaki T., Eichelbaum M., Horai Y., Hashimoto K., Chiba K., Dengler H. J. Evidence for polymorphic oxidation of sparteine in Japanese subjects. Br J Clin Pharmacol. 1987 Apr;23(4):482–485. doi: 10.1111/j.1365-2125.1987.tb03080.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Iyun A. O., Lennard M. S., Tucker G. T., Woods H. F. Metoprolol and debrisoquin metabolism in Nigerians: lack of evidence for polymorphic oxidation. Clin Pharmacol Ther. 1986 Oct;40(4):387–394. doi: 10.1038/clpt.1986.195. [DOI] [PubMed] [Google Scholar]
  19. Lee E. J., Lee L. K. A simple pharmacokinetic method for separating the three acetylation phenotypes: a preliminary report. Br J Clin Pharmacol. 1982 Mar;13(3):375–378. doi: 10.1111/j.1365-2125.1982.tb01388.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lunde P. K., Frislid K., Hansteen V. Disease and acetylation polymorphism. Clin Pharmacokinet. 1977 May-Jun;2(3):182–197. doi: 10.2165/00003088-197702030-00003. [DOI] [PubMed] [Google Scholar]
  21. Paulsen O., Nilsson L. G. Distribution of acetylator phenotype in relation to age and sex in Swedish patients. A retrospective study. Eur J Clin Pharmacol. 1985;28(3):311–315. doi: 10.1007/BF00543329. [DOI] [PubMed] [Google Scholar]
  22. Peters J. H., Murray J. F., Jr, Gordon G. R., Gelber R. H. Dapsone in saliva and plasma of man. Pharmacology. 1981;22(3):162–171. doi: 10.1159/000137486. [DOI] [PubMed] [Google Scholar]
  23. Philip P. A., Gayed S. L., Rogers H. J., Crome P. Influence of age, sex and body weight on the dapsone acetylation phenotype. Br J Clin Pharmacol. 1987 Jun;23(6):709–713. doi: 10.1111/j.1365-2125.1987.tb03105.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Philip P. A., Roberts M. S., Rogers H. J. A rapid method for determination of acetylation phenotype using dapsone. Br J Clin Pharmacol. 1984 Apr;17(4):465–469. doi: 10.1111/j.1365-2125.1984.tb02373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reidenberg M. M., Drayer D. E., Levy M., Warner H. Polymorphic acetylation procainamide in man. Clin Pharmacol Ther. 1975 Jun;17(6):722–730. doi: 10.1002/cpt1975176722. [DOI] [PubMed] [Google Scholar]
  26. SUNAHARA S., URANO M., LIN H. T., CHEG T. J., JARUMILINDA A. FURTHER OBSERVATIONS ON TRIMODALITY OF FREQUENCY DISTRIBUTION CURVE OF BIOLOGICALLY ACTIVE ISONIAZID BLOOD LEVELS AND "CLINE" INFREQUENCIES OF ALLELES CONTROLLING ISONIAZID INACTIVATION. Acta Tuberc Pneumol Scand. 1963;43:181–195. [PubMed] [Google Scholar]
  27. SUNAHARA S., URANOM, OGAWAM Genetical and geographic studies on isoniazid inactivation. Science. 1961 Nov 10;134(3489):1530–1531. doi: 10.1126/science.134.3489.1530. [DOI] [PubMed] [Google Scholar]
  28. Weber W. W., Hein D. W., Litwin A., Lower G. M., Jr Relationship of acetylator status to isoniazid toxicity, lupus erythematosus, and bladder cancer. Fed Proc. 1983 Nov;42(14):3086–3097. [PubMed] [Google Scholar]
  29. Weber W. W., Hein D. W. N-acetylation pharmacogenetics. Pharmacol Rev. 1985 Mar;37(1):25–79. [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES