Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):48–51. doi: 10.1128/aem.61.1.48-51.1995

Methanogenic Conversion of 3-S-Methylmercaptopropionate to 3-Mercaptopropionate

M van der Maarel, M Jansen, T A Hansen
PMCID: PMC1388317  PMID: 16534921

Abstract

Anaerobic metabolism of dimethylsulfoniopropionate, an osmolyte of marine algae, in anoxic intertidal sediments involves either cleavage to dimethylsulfide or demethylation to 3-S-methylmercaptopropionate (MMPA) and subsequently to 3-mercaptopropionate. The methanogenic archaea Methanosarcina sp. strain MTP4 (DSM 6636), Methanosarcina acetivorans DSM 2834, and Methanosarcina (Methanolobus) siciliae DSM 3028 were found to use MMPA as a growth substrate and to convert it stoichiometrically to 3-mercaptopropionate. Approximately 0.75 mol of methane was formed per mol of MMPA degraded; methanethiol was not detected as an intermediate. Eight other methanogenic strains did not carry out this conversion. We also studied the conversion of MMPA in anoxic marine sediment slurries. Addition of MMPA (500 (mu)M) resulted in the production of methanethiol which was subsequently converted to methane (417 (mu)M). In the presence of the antibiotics ampicillin, vancomycin, and kanamycin (20 (mu)g/ml each), 275 (mu)M methane was formed from 380 (mu)M MMPA; no methanethiol was formed during these incubations. Only methanethiol was formed from MMPA when 2-bromoethanesulfonate (25 mM) was added to a sediment suspension. These results indicate that in natural environments MMPA could be directly or indirectly a substrate for methanogenic archaea.

Full Text

The Full Text of this article is available as a PDF (212.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ferry J. G. Biochemistry of methanogenesis. Crit Rev Biochem Mol Biol. 1992;27(6):473–503. doi: 10.3109/10409239209082570. [DOI] [PubMed] [Google Scholar]
  2. Heijthuijsen J. H., Hansen T. A. Betaine fermentation and oxidation by marine desulfuromonas strains. Appl Environ Microbiol. 1989 Apr;55(4):965–969. doi: 10.1128/aem.55.4.965-969.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hogan J. I. The research experience: from Agassiz to the Victoria embankment. Community Dent Health. 1991 Jul;8(2):181–182. [PubMed] [Google Scholar]
  4. Kiene R. P., Malloy K. D., Taylor B. F. Sulfur-containing amino acids as precursors of thiols in anoxic coastal sediments. Appl Environ Microbiol. 1990 Jan;56(1):156–161. doi: 10.1128/aem.56.1.156-161.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kiene R. P., Oremland R. S., Catena A., Miller L. G., Capone D. G. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol. 1986 Nov;52(5):1037–1045. doi: 10.1128/aem.52.5.1037-1045.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kiene R. P., Taylor B. F. Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments. Appl Environ Microbiol. 1988 Sep;54(9):2208–2212. doi: 10.1128/aem.54.9.2208-2212.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kiene R. P., Visscher P. T. Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol. 1987 Oct;53(10):2426–2434. doi: 10.1128/aem.53.10.2426-2434.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ni S., Woese C. R., Aldrich H. C., Boone D. R. Transfer of Methanolobus siciliae to the genus Methanosarcina, naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina. Int J Syst Bacteriol. 1994 Apr;44(2):357–359. doi: 10.1099/00207713-44-2-357. [DOI] [PubMed] [Google Scholar]
  9. O'Brien J. M., Wolkin R. H., Moench T. T., Morgan J. B., Zeikus J. G. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol. 1984 Apr;158(1):373–375. doi: 10.1128/jb.158.1.373-375.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Oremland R. S., Kiene R. P., Mathrani I., Whiticar M. J., Boone D. R. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl Environ Microbiol. 1989 Apr;55(4):994–1002. doi: 10.1128/aem.55.4.994-1002.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Senior E., Lindström E. B., Banat I. M., Nedwell D. B. Sulfate reduction and methanogenesis in the sediment of a saltmarsh on the East coast of the United kingdom. Appl Environ Microbiol. 1982 May;43(5):987–996. doi: 10.1128/aem.43.5.987-996.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Taylor B. F., Gilchrist D. C. New routes for aerobic biodegradation of dimethylsulfoniopropionate. Appl Environ Microbiol. 1991 Dec;57(12):3581–3584. doi: 10.1128/aem.57.12.3581-3584.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Visscher P. T., van Gemerden H. Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Appl Environ Microbiol. 1991 Nov;57(11):3237–3242. doi: 10.1128/aem.57.11.3237-3242.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wackett L. P., Honek J. F., Begley T. P., Wallace V., Orme-Johnson W. H., Walsh C. T. Substrate analogues as mechanistic probes of methyl-S-coenzyme M reductase. Biochemistry. 1987 Sep 22;26(19):6012–6018. doi: 10.1021/bi00393a010. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES