Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):209–217. doi: 10.1128/aem.61.1.209-217.1995

Transport Behavior of Groundwater Protozoa and Protozoan-Sized Microspheres in Sandy Aquifer Sediments

R W Harvey, N E Kinner, A Bunn, D MacDonald, D Metge
PMCID: PMC1388327  PMID: 16534904

Abstract

Transport behaviors of unidentified flagellated protozoa (flagellates) and flagellate-sized carboxylated microspheres in sandy, organically contaminated aquifer sediments were investigated in a small-scale (1 to 4-m travel distance) natural-gradient tracer test on Cape Cod and in flow-through columns packed with sieved (0.5-to 1.0-mm grain size) aquifer sediments. The minute (average in situ cell size, 2 to 3 (mu)m) flagellates, which are relatively abundant in the Cape Cod aquifer, were isolated from core samples, grown in a grass extract medium, labeled with hydroethidine (a vital eukaryotic stain), and coinjected into aquifer sediments along with bromide, a conservative tracer. The 2-(mu)m flagellates appeared to be near the optimal size for transport, judging from flowthrough column experiments involving a polydispersed (0.7 to 6.2 (mu)m in diameter) suspension of carboxylated microspheres. However, immobilization within the aquifer sediments accounted for a log unit reduction over the first meter of travel compared with a log unit reduction over the first 10 m of travel for indigenous, free-living groundwater bacteria in earlier tests. High rates of flagellate immobilization in the presence of aquifer sediments also was observed in the laboratory. However, immobilization rates for the laboratory-grown flagellates (initially 4 to 5 (mu)m) injected into the aquifer were not constant and decreased noticeably with increasing time and distance of travel. The decrease in propensity for grain surfaces was accompanied by a decrease in cell size, as the flagellates presumably readapted to aquifer conditions. Retardation and apparent dispersion were generally at least twofold greater than those observed earlier for indigenous groundwater bacteria but were much closer to those observed for highly surface active carboxylated latex microspheres. Field and laboratory results suggest that 2-(mu)m carboxylated microspheres may be useful as analogs in investigating several abiotic aspects of flagellate transport behavior in groundwater.

Full Text

The Full Text of this article is available as a PDF (285.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fontes D. E., Mills A. L., Hornberger G. M., Herman J. S. Physical and chemical factors influencing transport of microorganisms through porous media. Appl Environ Microbiol. 1991 Sep;57(9):2473–2481. doi: 10.1128/aem.57.9.2473-2481.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Harvey R. W., Smith R. L., George L. Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer. Appl Environ Microbiol. 1984 Dec;48(6):1197–1202. doi: 10.1128/aem.48.6.1197-1202.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Madsen E. L., Sinclair J. L., Ghiorse W. C. In situ biodegradation: microbiological patterns in a contaminated aquifer. Science. 1991 May 10;252(5007):830–833. doi: 10.1126/science.2028258. [DOI] [PubMed] [Google Scholar]
  5. Sinclair J. L., Ghiorse W. C. Distribution of protozoa in subsurface sediments of a pristine groundwater study site in oklahoma. Appl Environ Microbiol. 1987 May;53(5):1157–1163. doi: 10.1128/aem.53.5.1157-1163.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sinclair J. L., Kampbell D. H., Cook M. L., Wilson J. T. Protozoa in subsurface sediments from sites contaminated with aviation gasoline or jet fuel. Appl Environ Microbiol. 1993 Feb;59(2):467–472. doi: 10.1128/aem.59.2.467-472.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Smith R. L., Duff J. H. Denitrification in a sand and gravel aquifer. Appl Environ Microbiol. 1988 May;54(5):1071–1078. doi: 10.1128/aem.54.5.1071-1078.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Tremblay R. E., Loeber R., Gagnon C., Charlebois P., Larivée S., LeBlanc M. Disruptive boys with stable and unstable high fighting behavior patterns during junior elementary school. J Abnorm Child Psychol. 1991 Jun;19(3):285–300. doi: 10.1007/BF00911232. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES