Abstract
In the presence of bromide, ozonation as applied in water treatment results in the formation of bromate, an ion with carcinogenic properties. The reduction of bromate by mixed bacterial populations as well as pure cultures was studied under laboratory conditions. Bromate was reduced to bromide by a mixed bacterial population with and without a preceding nitrate reduction step in an anaerobically incubated medium with ethanol as the energy and carbon source at 20 and 25 deg C. The predominating bacteria isolated from the batches showing bromate reduction were identified as Pseudomonas spp. Strains of Pseudomonas fluorescens reduced BrO(inf3)(sup-) to Br(sup-) but at a much lower rate than the mixed bacterial population did. Nitrate is a preferred electron acceptor for the bromate-reducing bacteria. Bromate reduction did not occur in the presence of NO(inf3)(sup-), and the rate of bromate reduction was at least 100 times lower than the rate of nitrate reduction. Bromate was completely converted to Br(sup-), indicating that intermediates, e.g., BrO(inf2)(sup-), did not accumulate during bromate reduction.
Full Text
The Full Text of this article is available as a PDF (258.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Finch G. R., Black E. K., Gyürék L., Belosevic M. Ozone inactivation of Cryptosporidium parvum in demand-free phosphate buffer determined by in vitro excystation and animal infectivity. Appl Environ Microbiol. 1993 Dec;59(12):4203–4210. doi: 10.1128/aem.59.12.4203-4210.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUGH R., LEIFSON E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol. 1953 Jul;66(1):24–26. doi: 10.1128/jb.66.1.24-26.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackenthal E. Die Reduktion von Perchlorat durch Bacterien. II. Die Identität der Nitratreduktase und des Perchlorat reduzierenden Enzyms aus B. cereus. Biochem Pharmacol. 1965 Sep;14(9):1313–1324. doi: 10.1016/0006-2952(65)90118-8. [DOI] [PubMed] [Google Scholar]
- KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
- KOVACS N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature. 1956 Sep 29;178(4535):703–703. doi: 10.1038/178703a0. [DOI] [PubMed] [Google Scholar]
- Karki A. B., Kaiser P. Etude de l'action de chlorate of soude sur des souches de bactéries du sol réductrices du nitrate. Ann Microbiol (Paris) 1979 Feb-Mar;130(2):213–230. [PubMed] [Google Scholar]
- Kurokawa Y., Maekawa A., Takahashi M., Hayashi Y. Toxicity and carcinogenicity of potassium bromate--a new renal carcinogen. Environ Health Perspect. 1990 Jul;87:309–335. doi: 10.1289/ehp.9087309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lortie L., Gould W. D., Rajan S., McCready R. G., Cheng K. J. Reduction of Selenate and Selenite to Elemental Selenium by a Pseudomonas stutzeri Isolate. Appl Environ Microbiol. 1992 Dec;58(12):4042–4044. doi: 10.1128/aem.58.12.4042-4044.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macy J. M., Michel T. A., Kirsch D. G. Selenate reduction by a Pseudomonas species: a new mode of anaerobic respiration. FEMS Microbiol Lett. 1989 Oct 1;52(1-2):195–198. doi: 10.1016/0378-1097(89)90195-x. [DOI] [PubMed] [Google Scholar]
- Malmqvist A., Welander T., Gunnarsson L. Anaerobic growth of microorganisms with chlorate as an electron acceptor. Appl Environ Microbiol. 1991 Aug;57(8):2229–2232. doi: 10.1128/aem.57.8.2229-2232.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oltmann L. F., Reijnders W. N., Stouthamer A. H. The correlation between the protein composition of cytoplasmic membranes and the formation of nitrate reductase A, chlorate reductase C and tetrathionate reductase in Proteus mirabilis wild type and some cholate resistant mutants. Arch Microbiol. 1976 Dec 1;111(1-2):37–43. doi: 10.1007/BF00446547. [DOI] [PubMed] [Google Scholar]
- Pichinoty F. Quelques observations concernant la mesure de l'activité chlorate-réductase des extraits enzymatiques bactériens par une méthode manométrique. Arch Mikrobiol. 1969;66(4):315–320. [PubMed] [Google Scholar]
- Reasoner D. J., Geldreich E. E. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985 Jan;49(1):1–7. doi: 10.1128/aem.49.1.1-7.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solomonson L. P., Vennesland B. Nitrate Reductase and Chlorate Toxicity in Chlorella vulgaris Beijerinck. Plant Physiol. 1972 Oct;50(4):421–424. doi: 10.1104/pp.50.4.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
- Steinberg N. A., Blum J. S., Hochstein L., Oremland R. S. Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria. Appl Environ Microbiol. 1992 Jan;58(1):426–428. doi: 10.1128/aem.58.1.426-428.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Kooij D., Visser A., Oranje J. P. Multiplication of fluorescent pseudomonads at low substrate concentrations in tap water. Antonie Van Leeuwenhoek. 1982;48(3):229–243. doi: 10.1007/BF00400383. [DOI] [PubMed] [Google Scholar]