Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):310–316. doi: 10.1128/aem.61.1.310-316.1995

Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

S Liu, G G Pritchard, M J Hardman, G J Pilone
PMCID: PMC1388333  PMID: 16534912

Abstract

l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria. These enzymes were present in all heterofermentative lactobacilli and most leuconostocs but were absent in all the homofermentative lactobacilli and pediococci examined. There was a good correlation among arginine degradation, formation of ammonia and citrulline, and the occurrence of arginine deiminase pathway enzymes. Urea was not detected during arginine degradation, suggesting that the catabolism of arginine did not proceed via the arginase-catalyzed reaction, as has been suggested in some earlier studies. Detection of ammonia with Nessler's reagent was shown to be a simple, rapid test to assess the ability of wine lactic acid bacteria to degrade arginine, although in media containing relatively high concentrations (>0.5%) of fructose, ammonia formation is inhibited.

Full Text

The Full Text of this article is available as a PDF (185.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crane C. J., Abdelal A. T. Regulation of carbamylphosphate synthesis in Serratia marcescens. J Bacteriol. 1980 Aug;143(2):588–593. doi: 10.1128/jb.143.2.588-593.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crow V. L., Thomas T. D. Arginine metabolism in lactic streptococci. J Bacteriol. 1982 Jun;150(3):1024–1032. doi: 10.1128/jb.150.3.1024-1032.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DEIBEL R. H., NIVEN C. F., Jr, WILSON G. D. Microbiology of meat curing. III. Some microbiological and related technological aspects in the manufacture of fermented sausages. Appl Microbiol. 1961 Mar;9:156–161. doi: 10.1128/am.9.2.156-161.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DEIBEL R. H., WILSON G. D., NIVEN C. F., Jr Microbiology of meat curing. IV. A lyophilized Pediococcus cerevisiae starter culture for fermented sausage. Appl Microbiol. 1961 May;9:239–243. doi: 10.1128/am.9.3.239-243.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis C. R., Wibowo D. J., Lee T. H., Fleet G. H. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH. Appl Environ Microbiol. 1986 Mar;51(3):539–545. doi: 10.1128/aem.51.3.539-545.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GILBOE D. D., WILLIAMS J. N., Jr Evaluation of the Sakaguchi reaction for quanitative determination of arginine. Proc Soc Exp Biol Med. 1956 Apr;91(4):535–536. doi: 10.3181/00379727-91-22318. [DOI] [PubMed] [Google Scholar]
  7. Garvie E. I. Leuconostoc oenos sp.nov. J Gen Microbiol. 1967 Sep;48(3):431–438. doi: 10.1099/00221287-48-3-431. [DOI] [PubMed] [Google Scholar]
  8. Henick-Kling T., Sandine W. E., Heatherbell D. A. Evaluation of Malolactic Bacteria Isolated from Oregon Wines. Appl Environ Microbiol. 1989 Aug;55(8):2010–2016. doi: 10.1128/aem.55.8.2010-2016.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hiraoka B. Y., Mogi M., Fukasawa K., Harada M. Coordinate repression of arginine aminopeptidase and three enzymes of the arginine deiminase pathway in Streptococcus mitis. Biochem Int. 1986 Jun;12(6):881–887. [PubMed] [Google Scholar]
  10. Izuagbe Y. S., Dohman T. P., Sandine W. E., Heatherbell D. A. Characterization of Leuconostoc oenos Isolated from Oregon Wines. Appl Environ Microbiol. 1985 Sep;50(3):680–684. doi: 10.1128/aem.50.3.680-684.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Montel M. C., Champomier M. C. Arginine catabolism in Lactobacillus sake isolated from meat. Appl Environ Microbiol. 1987 Nov;53(11):2683–2685. doi: 10.1128/aem.53.11.2683-2685.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ough C. S. Ethylcarbamate in fermented beverages and foods. I. Naturally occurring ethylcarbamate. J Agric Food Chem. 1976 Mar-Apr;24(2):323–328. doi: 10.1021/jf60204a033. [DOI] [PubMed] [Google Scholar]
  13. Pilone G. J., Kunkee R. E., Webb A. D. Chemical characterization of wines fermented with various malo-lactic bacteria. Appl Microbiol. 1966 Jul;14(4):608–615. doi: 10.1128/am.14.4.608-615.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  15. THORNE K. J., JONES M. E. CARBAMYL AND ACETYL PHOSPHOKINASE ACTIVITIES OF STREPTOCOCCUS FAECALIS AND ESCHERICHIA COLI. J Biol Chem. 1963 Sep;238:2992–2998. [PubMed] [Google Scholar]
  16. Weiller H. G., Radler F. Uber den Aminosäurestoffwechsel von Milchsäurebakterien aus Wein. Z Lebensm Unters Forsch. 1976;161(3):259–266. doi: 10.1007/BF01105812. [DOI] [PubMed] [Google Scholar]
  17. YASHPHE J., GORINI L. PHOSPHORYLATION OF CARBAMATE IN VIVO AND IN VITRO. J Biol Chem. 1965 Apr;240:1681–1686. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES