Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):317–325. doi: 10.1128/aem.61.1.317-325.1995

Viral Contribution to Dissolved DNA in the Marine Environment as Determined by Differential Centrifugation and Kingdom Probing

S C Jiang, J H Paul
PMCID: PMC1388334  PMID: 16534913

Abstract

Dissolved or filterable (<0.2-(mu)m-pore-size filter) DNA is a ubiquitous component of the dissolved organic matter in the surface waters of this planet. In an effort to understand the composition and possible sources, we subjected dissolved DNA concentrated by vortex flow filtration from offshore and coastal environments to differential centrifugation and probing with 16S rRNA-targeted kingdom oligonucleotide probes. Initial studies with calf thymus soluble DNA and T2 phage particles indicated that high-speed ultracentrifugation (201,000 x g for 90 min), a method to separate viral particles from soluble DNA used by other investigators, resulted in pelleting of nearly all the DNA and virus particles. Lower-speed centrifugation (11,200 to 25,800 x g for 90 min) resulted in >99% of the virus particles being collected in the pellet and (equiv)65% of the calf thymus DNA remaining in the supernatant. Employing this approach, we estimate that approximately 50% of the filterable DNA from marine environments is truly soluble or free DNA and that the other half is composed of bound forms (viral particles and, potentially, colloids). Of the bound form, 17 to 30% could be accounted for by viral particles, by calculating the amount of viral DNA on the basis of viral abundance, leaving a portion of the bound form uncharacterized. Kingdom probing with universal, eubacterial, and eucaryotic probes indicated that dissolved DNA hybridized with all of these probes, while purified standard viral DNAs did not, or hybridized only slightly with the universal probe (tailed oligonucleotide only). Collectively, these data indicate that DNA in viral particles is a small component of the dissolved DNA, the majority being of eubacterial and eucaryotic origin.

Full Text

The Full Text of this article is available as a PDF (667.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergh O., Børsheim K. Y., Bratbak G., Heldal M. High abundance of viruses found in aquatic environments. Nature. 1989 Aug 10;340(6233):467–468. doi: 10.1038/340467a0. [DOI] [PubMed] [Google Scholar]
  3. Concino M. F., Goodgal S. H. DNA-binding vesicles released from the surface of a competence-deficient mutant of Haemophilus influenzae. J Bacteriol. 1982 Oct;152(1):441–450. doi: 10.1128/jb.152.1.441-450.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deflaun M. F., Paul J. H., Davis D. Simplified method for dissolved DNA determination in aquatic environments. Appl Environ Microbiol. 1986 Oct;52(4):654–659. doi: 10.1128/aem.52.4.654-659.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dorward D. W., Garon C. F. DNA Is Packaged within Membrane-Derived Vesicles of Gram-Negative but Not Gram-Positive Bacteria. Appl Environ Microbiol. 1990 Jun;56(6):1960–1962. doi: 10.1128/aem.56.6.1960-1962.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dorward D. W., Garon C. F. DNA-binding proteins in cells and membrane blebs of Neisseria gonorrhoeae. J Bacteriol. 1989 Aug;171(8):4196–4201. doi: 10.1128/jb.171.8.4196-4201.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dorward D. W., Garon C. F., Judd R. C. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol. 1989 May;171(5):2499–2505. doi: 10.1128/jb.171.5.2499-2505.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. doi: 10.1038/345060a0. [DOI] [PubMed] [Google Scholar]
  9. Giovannoni S. J., DeLong E. F., Olsen G. J., Pace N. R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol. 1988 Feb;170(2):720–726. doi: 10.1128/jb.170.2.720-726.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maruyama A., Oda M., Higashihara T. Abundance of Virus-Sized Non-DNase-Digestible DNA (Coated DNA) in Eutrophic Seawater. Appl Environ Microbiol. 1993 Mar;59(3):712–717. doi: 10.1128/aem.59.3.712-717.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Paul J. H., Cazares L., Thurmond J. Amplification of the rbcL gene from dissolved and particulate DNA from aquatic environments. Appl Environ Microbiol. 1990 Jun;56(6):1963–1966. doi: 10.1128/aem.56.6.1963-1966.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paul J. H., David A. W. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms. Appl Environ Microbiol. 1989 Aug;55(8):1865–1869. doi: 10.1128/aem.55.8.1865-1869.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paul J. H., Jeffrey W. H., Cannon J. P. Production of dissolved DNA, RNA, and protein by microbial populations in a Florida reservoir. Appl Environ Microbiol. 1990 Oct;56(10):2957–2962. doi: 10.1128/aem.56.10.2957-2962.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paul J. H., Jeffrey W. H., DeFlaun M. F. Dynamics of extracellular DNA in the marine environment. Appl Environ Microbiol. 1987 Jan;53(1):170–179. doi: 10.1128/aem.53.1.170-179.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Paul J. H., Jiang S. C., Rose J. B. Concentration of viruses and dissolved DNA from aquatic environments by vortex flow filtration. Appl Environ Microbiol. 1991 Aug;57(8):2197–2204. doi: 10.1128/aem.57.8.2197-2204.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paul J. H., Myers B. Fluorometric determination of DNA in aquatic microorganisms by use of hoechst 33258. Appl Environ Microbiol. 1982 Jun;43(6):1393–1399. doi: 10.1128/aem.43.6.1393-1399.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Paul J. H. Use of hoechst dyes 33258 and 33342 for enumeration of attached and planktonic bacteria. Appl Environ Microbiol. 1982 Apr;43(4):939–944. doi: 10.1128/aem.43.4.939-944.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pifer M. L., Smith H. O. Processing of donor DNA during Haemophilus influenzae transformation: analysis using a model plasmid system. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3731–3735. doi: 10.1073/pnas.82.11.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988 May;54(5):1079–1084. doi: 10.1128/aem.54.5.1079-1084.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weinbauer M. G., Fuks D., Peduzzi P. Distribution of Viruses and Dissolved DNA along a Coastal Trophic Gradient in the Northern Adriatic Sea. Appl Environ Microbiol. 1993 Dec;59(12):4074–4082. doi: 10.1128/aem.59.12.4074-4082.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES