Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):352–356. doi: 10.1128/aem.61.1.352-356.1995

A Simple and Rapid Method of Transformation of Streptomyces rimosus R6 and Other Streptomycetes by Electroporation

J Pigac, H Schrempf
PMCID: PMC1388336  PMID: 16534915

Abstract

Usually plasmid DNA is introduced into Streptomyces strains by polyethylene glycol-mediated transformation of protoplasts. However, many Streptomyces strains are only poorly or not at all transformable via protoplasts. Therefore, we have optimized the parameters critical for the application of electrotransformation of plasmid DNA into Streptomyces species. The most critical parameters evaluated for electrotransformation of the model strain Streptomyces rimosus R6 were the pretreatment of mycelia, buffer composition, and electric field strength. The electrocompetent mycelia were prepared from 24-h-old cultures, treated mildly with lysozyme, resuspended in sucrose-glycerol-polyethylene glycol buffer, and stored in aliquots at -70 deg C. The electric field strength of 10 kV/cm at 400 (Omega) and a capacitance of 25 (mu)F was applied. The method is simple and rapid, yielding transformant colonies in 48 to 72 h. Efficiencies of 10(sup5) to 10(sup6) transformants per (mu)g of plasmid DNA were reproducibly achieved for S. rimosus R6 and its mutants, and these numbers were 10(sup2) to 10(sup3) higher than those attained by polyethylene glycol-assisted transformation of protoplasts. In addition, we show that electroporation can be applied to other Streptomyces species, such as S. lividans 66, S. coelicolor A3(2), and an S. venezuelae strain. This last one could not be transformed by the standard protoplast procedure. Our data suggest that, because of the diversity of streptomycetes, the conditions have to be optimized for each strain.

Full Text

The Full Text of this article is available as a PDF (275.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bibb M. J., Ward J. M., Hopwood D. A. Transformation of plasmid DNA into Streptomyces at high frequency. Nature. 1978 Jul 27;274(5669):398–400. doi: 10.1038/274398a0. [DOI] [PubMed] [Google Scholar]
  2. Bonnassie S., Burini J. F., Oreglia J., Trautwetter A., Patte J. C., Sicard A. M. Transfer of plasmid DNA to Brevibacterium lactofermentum by electrotransformation. J Gen Microbiol. 1990 Oct;136(10):2107–2112. doi: 10.1099/00221287-136-10-2107. [DOI] [PubMed] [Google Scholar]
  3. Desomer J., Dhaese P., Montagu M. V. Transformation of Rhodococcus fascians by High-Voltage Electroporation and Development of R. fascians Cloning Vectors. Appl Environ Microbiol. 1990 Sep;56(9):2818–2825. doi: 10.1128/aem.56.9.2818-2825.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Diver J. M., Bryan L. E., Sokol P. A. Transformation of Pseudomonas aeruginosa by electroporation. Anal Biochem. 1990 Aug 15;189(1):75–79. doi: 10.1016/0003-2697(90)90046-c. [DOI] [PubMed] [Google Scholar]
  5. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunny G. M., Lee L. N., LeBlanc D. J. Improved electroporation and cloning vector system for gram-positive bacteria. Appl Environ Microbiol. 1991 Apr;57(4):1194–1201. doi: 10.1128/aem.57.4.1194-1201.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harik S. I., Sharma V. K., Wetherbee J. R., Warren R. H., Banerjee S. P. Adrenergic and cholinergic receptors of cerebral microvessels. J Cereb Blood Flow Metab. 1981;1(3):329–338. doi: 10.1038/jcbfm.1981.36. [DOI] [PubMed] [Google Scholar]
  8. Hermans J., Martin C., Huijberts G. N., Goosen T., de Bont J. A. Transformation of Mycobacterium aurum and Mycobacterium smegmatis with the broad host-range gram-negative cosmid vector pJRD215. Mol Microbiol. 1991 Jun;5(6):1561–1566. doi: 10.1111/j.1365-2958.1991.tb00803.x. [DOI] [PubMed] [Google Scholar]
  9. Holo H., Nes I. F. High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media. Appl Environ Microbiol. 1989 Dec;55(12):3119–3123. doi: 10.1128/aem.55.12.3119-3123.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Josson K., Scheirlinck T., Michiels F., Platteeuw C., Stanssens P., Joos H., Dhaese P., Zabeau M., Mahillon J. Characterization of a gram-positive broad-host-range plasmid isolated from Lactobacillus hilgardii. Plasmid. 1989 Jan;21(1):9–20. doi: 10.1016/0147-619x(89)90082-6. [DOI] [PubMed] [Google Scholar]
  11. Malik V. S., Vining L. C. Metabolism of chloramphenicol by the producing organism. Can J Microbiol. 1970 Mar;16(3):173–179. doi: 10.1139/m70-030. [DOI] [PubMed] [Google Scholar]
  12. Matsushima P., Baltz R. H. Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts. J Bacteriol. 1985 Jul;163(1):180–185. doi: 10.1128/jb.163.1.180-185.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mattanovich D., Rüker F., Machado A. C., Laimer M., Regner F., Steinkellner H., Himmler G., Katinger H. Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res. 1989 Aug 25;17(16):6747–6747. doi: 10.1093/nar/17.16.6747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller J. F., Dower W. J., Tompkins L. S. High-voltage electroporation of bacteria: genetic transformation of Campylobacter jejuni with plasmid DNA. Proc Natl Acad Sci U S A. 1988 Feb;85(3):856–860. doi: 10.1073/pnas.85.3.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pigac J., Hranueli D., Smokvina T., Alacević M. Optimal Cultural and Physiological Conditions for Handling Streptomyces rimosus Protoplasts. Appl Environ Microbiol. 1982 Nov;44(5):1178–1186. doi: 10.1128/aem.44.5.1178-1186.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pigac J., Vujaklija D., Toman Z., Gamulin V., Schrempf H. Structural instability of a bifunctional plasmid pZG1 and single-stranded DNA formation in Streptomyces. Plasmid. 1988 May;19(3):222–230. doi: 10.1016/0147-619x(88)90040-6. [DOI] [PubMed] [Google Scholar]
  17. Powell Ian B., Achen Marc G., Hillier Alan J., Davidson Barrie E. A Simple and Rapid Method for Genetic Transformation of Lactic Streptococci by Electroporation. Appl Environ Microbiol. 1988 Mar;54(3):655–660. doi: 10.1128/aem.54.3.655-660.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shigekawa K., Dower W. J. Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells. Biotechniques. 1988 Sep;6(8):742–751. [PubMed] [Google Scholar]
  19. Singer M. E., Finnerty W. R. Construction of an Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. J Bacteriol. 1988 Feb;170(2):638–645. doi: 10.1128/jb.170.2.638-645.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Snapper S. B., Lugosi L., Jekkel A., Melton R. E., Kieser T., Bloom B. R., Jacobs W. R., Jr Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6987–6991. doi: 10.1073/pnas.85.18.6987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Strätz M., Sauer U., Kuhn A., Dürre P. Plasmid Transfer into the Homoacetogen Acetobacterium woodii by Electroporation and Conjugation. Appl Environ Microbiol. 1994 Mar;60(3):1033–1037. doi: 10.1128/aem.60.3.1033-1037.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES