Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jan;61(1):393–396. doi: 10.1128/aem.61.1.393-396.1995

Unusual Growth Phase and Oxygen Tension Regulation of Oxidative Stress Protection Enzymes, Catalase and Superoxide Dismutase, in the Phytopathogen Xanthomonas oryzae pv. oryzae

S Chamnongpol, S Mongkolsuk, P Vattanaviboon, M Fuangthong
PMCID: PMC1388338  PMID: 16534917

Abstract

The enzymes catalase and superoxide dismutase play major roles in protecting phytopathogenic bacteria from oxidative stress. In Xanthomonas species, these enzymes are regulated by both growth phase and oxygen tension. The highest enzyme levels were detected within 1 h of growth. Continued growth resulted in a decline of both enzyme activities. High oxygen tension was an inducing signal for both enzyme activities. An 80,000-Da monofunctional catalase and a manganese superoxide dismutase were the major forms of the enzymes detected at different stages of growth. The unusual regulatory patterns are common among several Xanthomonas strains tested and may be advantageous to Xanthomonas species during the initial stage of plant-microorganism interactions.

Full Text

The Full Text of this article is available as a PDF (305.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  2. Bishai W. R., Smith H. O., Barcak G. J. A peroxide/ascorbate-inducible catalase from Haemophilus influenzae is homologous to the Escherichia coli katE gene product. J Bacteriol. 1994 May;176(10):2914–2921. doi: 10.1128/jb.176.10.2914-2921.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Clare D. A., Duong M. N., Darr D., Archibald F., Fridovich I. Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem. 1984 Aug 1;140(2):532–537. doi: 10.1016/0003-2697(84)90204-5. [DOI] [PubMed] [Google Scholar]
  5. Fang F. C., Libby S. J., Buchmeier N. A., Loewen P. C., Switala J., Harwood J., Guiney D. G. The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11978–11982. doi: 10.1073/pnas.89.24.11978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farr S. B., Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev. 1991 Dec;55(4):561–585. doi: 10.1128/mr.55.4.561-585.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gregory E. M., Fridovich I. Visualization of catalase on acrylamide gels. Anal Biochem. 1974 Mar;58(1):57–62. doi: 10.1016/0003-2697(74)90440-0. [DOI] [PubMed] [Google Scholar]
  8. Hazell S. L., Evans D. J., Jr, Graham D. Y. Helicobacter pylori catalase. J Gen Microbiol. 1991 Jan;137(1):57–61. doi: 10.1099/00221287-137-1-57. [DOI] [PubMed] [Google Scholar]
  9. Ikeda S., Seki S., Watanabe S., Hatsushika M., Tsutsui K. Detection of possible DNA repair enzymes on sodium dodecyl sulfate-polyacrylamide gels by protein blotting to damaged DNA-fixed membranes. Anal Biochem. 1991 Jan;192(1):96–103. doi: 10.1016/0003-2697(91)90191-u. [DOI] [PubMed] [Google Scholar]
  10. Katsuwon J., Anderson A. J. Catalase and superoxide dismutase of root-colonizing saprophytic fluorescent pseudomonads. Appl Environ Microbiol. 1990 Nov;56(11):3576–3582. doi: 10.1128/aem.56.11.3576-3582.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Katsuwon J., Anderson A. J. Response of plant-colonizing pseudomonads to hydrogen peroxide. Appl Environ Microbiol. 1989 Nov;55(11):2985–2989. doi: 10.1128/aem.55.11.2985-2989.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klotz M. G., Hutcheson S. W. Multiple periplasmic catalases in phytopathogenic strains of Pseudomonas syringae. Appl Environ Microbiol. 1992 Aug;58(8):2468–2473. doi: 10.1128/aem.58.8.2468-2473.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Loewen P. C., Switala J. Multiple catalases in Bacillus subtilis. J Bacteriol. 1987 Aug;169(8):3601–3607. doi: 10.1128/jb.169.8.3601-3607.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Loewen P. C., Switala J., Triggs-Raine B. L. Catalases HPI and HPII in Escherichia coli are induced independently. Arch Biochem Biophys. 1985 Nov 15;243(1):144–149. doi: 10.1016/0003-9861(85)90782-9. [DOI] [PubMed] [Google Scholar]
  16. Mulvey M. R., Switala J., Borys A., Loewen P. C. Regulation of transcription of katE and katF in Escherichia coli. J Bacteriol. 1990 Dec;172(12):6713–6720. doi: 10.1128/jb.172.12.6713-6720.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reimers P. J., Guo A., Leach J. E. Increased Activity of a Cationic Peroxidase Associated with an Incompatible Interaction Between Xanthomonas oryzae pv oryzae and Rice (Oryza sativa). Plant Physiol. 1992 Jul;99(3):1044–1050. doi: 10.1104/pp.99.3.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Switala J., Triggs-Raine B. L., Loewen P. C. Homology among bacterial catalase genes. Can J Microbiol. 1990 Oct;36(10):728–731. doi: 10.1139/m90-123. [DOI] [PubMed] [Google Scholar]
  19. Wayne L. G., Diaz G. A. A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels. Anal Biochem. 1986 Aug 15;157(1):89–92. doi: 10.1016/0003-2697(86)90200-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES