Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Feb;61(2):623–629. doi: 10.1128/aem.61.2.623-629.1995

Nonpigmented and Bacteriochlorophyll-Containing Bradyrhizobia Isolated from Aeschynomene indica

P van Berkum, R E Tully, D L Keister
PMCID: PMC1388351  PMID: 16534933

Abstract

The legume genus Aeschynomene is unusual, since many species develop stem nodules and the bradyrhizobia isolated from these nodules produce bacteriochlorophyll (Bchl). Evidence is presented that the bradyrhizobia of Aeschynomene indica have wide distribution throughout the world, since A. indica was nodulated when grown in 58 soils collected in 14 different countries. Only 38 of 79 isolates tested synthesized Bchl and carotenoids during heterotrophic growth. Nine isolates produced Bchl constitutively, and cultures were pigmented after growth in the dark. The other isolates required light for Bchl production. The DNA from seven pigmented and three nonpigmented bradyrhizobia hybridized with a DNA probe containing the genes for the photosynthetic apparatus of Rhodobacter capsulatus, but DNA from two other nonpigmented isolates did not hybridize with this probe. A relationship between pigmentation in culture and symbiotic phenotype was not evident, since bradyrhizobia of both Bchl phenotypes nodulated stems of A. indica and formed nitrogen-fixing symbioses. Several isolates, which were ineffective on A. indica, probably do belong to the proposed cross-inoculation group 3 (D. Alazard, Appl. Environ. Microbiol. 50:732-734, 1985), since they did not nodulate Aeschynomene americana or Macroptilium atropurpureum. Since it has been suggested that extant rhizobia arose from photosynthetic ancestors (J. I. Sprent, p. 45-54, in P. M. Gresshoff, L. E. Roth, G. Stacey, and W. E. Newton, ed., Nitrogen Fixation: Achievements and Objectives, 1990), we propose that the nonpigmented isolates may represent an extant lineage of an intermediate evolutionary stage.

Full Text

The Full Text of this article is available as a PDF (270.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alazard D. Stem and Root Nodulation in Aeschynomene spp. Appl Environ Microbiol. 1985 Sep;50(3):732–734. doi: 10.1128/aem.50.3.732-734.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Collins A. R., Downes C. S., Johnson R. T. Introduction: an integrated view of inhibited repair. Nucleic Acids Symp Ser. 1984;(13):1–11. [PubMed] [Google Scholar]
  3. Evans W. R., Fleischman D. E., Calvert H. E., Pyati P. V., Alter G. M., Rao N. S. Bacteriochlorophyll and Photosynthetic Reaction Centers in Rhizobium Strain BTAi 1. Appl Environ Microbiol. 1990 Nov;56(11):3445–3449. doi: 10.1128/aem.56.11.3445-3449.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hahn M., Hennecke H. Mapping of a Bradyrhizobium japonicum DNA Region Carrying Genes for Symbiosis and an Asymmetric Accumulation of Reiterated Sequences. Appl Environ Microbiol. 1987 Sep;53(9):2247–2252. doi: 10.1128/aem.53.9.2247-2252.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Leonard L. T. A Simple Assembly for Use in the Testing of Cultures of Rhizobia. J Bacteriol. 1943 Jun;45(6):523–527. doi: 10.1128/jb.45.6.523-527.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Navarro R. B., Vargas A. A., Schröder E. C., van Berkum P. Uptake Hydrogenase (Hup) in Common Bean (Phaseolus vulgaris) Symbioses. Appl Environ Microbiol. 1993 Dec;59(12):4161–4165. doi: 10.1128/aem.59.12.4161-4165.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Taylor D. P., Cohen S. N., Clark W. G., Marrs B. L. Alignment of genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J Bacteriol. 1983 May;154(2):580–590. doi: 10.1128/jb.154.2.580-590.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Weaver P. F., Wall J. D., Gest H. Characterization of Rhodopseudomonas capsulata. Arch Microbiol. 1975 Nov 7;105(3):207–216. doi: 10.1007/BF00447139. [DOI] [PubMed] [Google Scholar]
  9. Wong F. Y., Stackebrandt E., Ladha J. K., Fleischman D. E., Date R. A., Fuerst J. A. Phylogenetic Analysis of Bradyrhizobium japonicum and Photosynthetic Stem-Nodulating Bacteria from Aeschynomene Species Grown in Separated Geographical Regions. Appl Environ Microbiol. 1994 Mar;60(3):940–946. doi: 10.1128/aem.60.3.940-946.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Young J. P., Downer H. L., Eardly B. D. Phylogeny of the phototrophic rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol. 1991 Apr;173(7):2271–2277. doi: 10.1128/jb.173.7.2271-2277.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. van Berkum P. Evidence for a Third Uptake Hydrogenase Phenotype among the Soybean Bradyrhizobia. Appl Environ Microbiol. 1990 Dec;56(12):3835–3841. doi: 10.1128/aem.56.12.3835-3841.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. van Berkum P., Navarro R. B., Vargas A. A. Classification of the uptake hydrogenase-positive (Hup+) bean rhizobia as Rhizobium tropici. Appl Environ Microbiol. 1994 Feb;60(2):554–561. doi: 10.1128/aem.60.2.554-561.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. van Berkum P., Sloger C. Immediate acetylene reduction by excised grass roots not previously preincubated at low oxygen tensions. Plant Physiol. 1979 Nov;64(5):739–743. doi: 10.1104/pp.64.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES