Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Feb;61(2):749–757. doi: 10.1128/aem.61.2.749-757.1995

Microbiological Comparisons within and across Contiguous Lacustrine, Paleosol, and Fluvial Subsurface Sediments

T L Kieft, J K Fredrickson, J P McKinley, B N Bjornstad, S A Rawson, T J Phelps, F J Brockman, S M Pfiffner
PMCID: PMC1388358  PMID: 16534940

Abstract

Twenty-six subsurface samples were collected from a borehole at depths of 173.3 to 196.8 m in the saturated zone at the Hanford Site in south-central Washington State. The sampling was performed throughout strata that included fine-grained lacustrine (lake) sediments, a paleosol (buried soil) sequence, and coarse-grained fluvial (river) sediments. A subcoring method and tracers were used to minimize and quantify contamination to obtain samples that were representative of subsurface strata. Sediment samples were tested for total organic carbon, inorganic carbon, total microorganisms by direct microscopic counts, culturable aerobic heterotrophs by plate counts, culturable anaerobes by most-probable-number enumeration, basal respiration rates, and mineralization of (sup14)C-labeled glucose and acetate. Total direct microscopic counts of microorganisms were low, ranging from below detection to 1.9 x 10(sup5) cells g (dry weight)(sup-1). Culturable aerobes and anaerobes were below minimum levels of detection in most samples. Direct microscopic counts, basal respiration rates, and (sup14)C-glucose mineralization were all positively correlated with total organic carbon and were highest in the lacustrine sediments. In contrast to previous subsurface studies, these saturated-zone samples did not have higher microbial abundance and activities than unsaturated sediments sampled from the same borehole, the fine-textured lacustrine sediment had higher microbial numbers and activities than the coarse-textured fluvial sands, and the paleosol samples did not have higher biomass and activities relative to the other sediments. The results of this study expand the subsurface microbiology database to include information from an environment very different from those previously studied.

Full Text

The Full Text of this article is available as a PDF (250.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balkwill D. L., Fredrickson J. K., Thomas J. M. Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep southeast coastal plain subsurface sediments. Appl Environ Microbiol. 1989 May;55(5):1058–1065. doi: 10.1128/aem.55.5.1058-1065.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chapelle F. H., Lovley D. R. Rates of microbial metabolism in deep coastal plain aquifers. Appl Environ Microbiol. 1990 Jun;56(6):1865–1874. doi: 10.1128/aem.56.6.1865-1874.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Colwell F. S. Microbiological comparison of surface soil and unsaturated subsurface soil from a semiarid high desert. Appl Environ Microbiol. 1989 Sep;55(9):2420–2423. doi: 10.1128/aem.55.9.2420-2423.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fredrickson J. K., Balkwill D. L., Zachara J. M., Li S. M., Brockman F. J., Simmons M. A. Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the atlantic coastal plain. Appl Environ Microbiol. 1991 Feb;57(2):402–411. doi: 10.1128/aem.57.2.402-411.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Konopka A., Turco R. Biodegradation of organic compounds in vadose zone and aquifer sediments. Appl Environ Microbiol. 1991 Aug;57(8):2260–2268. doi: 10.1128/aem.57.8.2260-2268.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES