Abstract
The motility characteristics of natural assemblages of coastal marine bacteria were examined. Initially, less than 10% of the bacteria were motile. A single addition of tryptic soy broth caused an increase in the motile fraction of cells but only after 7 to 12 h. Motility peaked at 15 to 30 h, when more than 80% of cells were motile. These results support the proposal that energy limits motility in the marine environment. Cell speeds changed more than an order of magnitude on timescales of milliseconds and hours. The maximum community speed was 144 (mu)m s(sup-1), and the maximum individual burst velocity was 407 (mu)m s(sup-1). In uniform medium, speed was an inverse function of tryptic soy broth concentration, declining linearly over 0.001 to 1.0%. In media where concentration gradients existed, the mean speed was a function of position in a spatial gradient, changing from 69 to 144 (mu)m s(sup-1) over as little as 15 to 30 (mu)m. The results suggest that marine bacteria are capable of previously undescribed quick shifts in speed that may permit the bacteria to rapidly detect and keep up with positional changes in small nutrient sources. These high speeds and quick shifts may reflect the requirements for useful motility in a turbulent ocean.
Full Text
The Full Text of this article is available as a PDF (237.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atsumi T., McCarter L., Imae Y. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature. 1992 Jan 9;355(6356):182–184. doi: 10.1038/355182a0. [DOI] [PubMed] [Google Scholar]
- Garcia-Pichel F. Rapid bacterial swimming measured in swarming cells of Thiovulum majus. J Bacteriol. 1989 Jun;171(6):3560–3563. doi: 10.1128/jb.171.6.3560-3563.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes K. T., Gillen K. L., Semon M. J., Karlinsey J. E. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science. 1993 Nov 19;262(5137):1277–1280. doi: 10.1126/science.8235660. [DOI] [PubMed] [Google Scholar]
- Lee S., Fuhrman J. A. Relationships between Biovolume and Biomass of Naturally Derived Marine Bacterioplankton. Appl Environ Microbiol. 1987 Jun;53(6):1298–1303. doi: 10.1128/aem.53.6.1298-1303.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malmcrona-Friberg K., Goodman A., Kjelleberg S. Chemotactic Responses of Marine Vibrio sp. Strain S14 (CCUG 15956) to Low-Molecular-Weight Substances under Starvation and Recovery Conditions. Appl Environ Microbiol. 1990 Dec;56(12):3699–3704. doi: 10.1128/aem.56.12.3699-3704.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell J. G., Martinez-Alonso M., Lalucat J., Esteve I., Brown S. Velocity changes, long runs, and reversals in the Chromatium minus swimming response. J Bacteriol. 1991 Feb;173(3):997–1003. doi: 10.1128/jb.173.3.997-1003.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novitsky J. A., Morita R. Y. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol. 1976 Oct;32(4):617–622. doi: 10.1128/aem.32.4.617-622.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poole P. S., Armitage J. P. Motility response of Rhodobacter sphaeroides to chemotactic stimulation. J Bacteriol. 1988 Dec;170(12):5673–5679. doi: 10.1128/jb.170.12.5673-5679.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segall J. E., Manson M. D., Berg H. C. Signal processing times in bacterial chemotaxis. Nature. 1982 Apr 29;296(5860):855–857. doi: 10.1038/296855a0. [DOI] [PubMed] [Google Scholar]