Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Mar;61(3):926–936. doi: 10.1128/aem.61.3.926-936.1995

Fully Automatic Determination of Soil Bacterium Numbers, Cell Volumes, and Frequencies of Dividing Cells by Confocal Laser Scanning Microscopy and Image Analysis

J Bloem, M Veninga, J Shepherd
PMCID: PMC1388375  PMID: 16534976

Abstract

We describe a fully automatic image analysis system capable of measuring cell numbers, volumes, lengths, and widths of bacteria in soil smears. The system also determines the number of cells in agglomerates and thus provides the frequency of dividing cells (FDC). Images are acquired from a confocal laser scanning microscope. The grey images are smoothed by convolution and by morphological erosion and dilation to remove noise. The background is equalized by flooding holes in the image and is then subtracted by two top hat transforms. Finally, the grey image is sharpened by delineation, and all particles above a fixed threshold are detected. The number of cells in each detected particle is determined by counting the number of local grey-level maxima in the particle. Thus, up to 1,500 cells in 10 fields of view in a soil smear are analyzed in 30 min without human intervention. Automatic counts of cell numbers and FDC were similar to visual counts in field samples. In microcosms, automatic measurements showed significant increases in cell numbers, FDC, mean cell volume, and length-to-width ratio after amendment of the soil. Volumes of fluorescent microspheres were measured with good approximation, but the absolute values obtained were strongly affected by the settings of the detector sensitivity. Independent measurements of bacterial cell numbers and volumes by image analysis and of cell carbon by a total organic carbon analyzer yielded an average specific carbon content of 200 fg of C (mu)m(sup-3), which indicates that our volume estimates are reasonable.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babiuk L. A., Paul E. A. The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can J Microbiol. 1970 Feb;16(2):57–62. doi: 10.1139/m70-011. [DOI] [PubMed] [Google Scholar]
  2. Bjørnsen P. K. Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol. 1986 Jun;51(6):1199–1204. doi: 10.1128/aem.51.6.1199-1204.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blakeslee D., Baines M. G. Immunofluorescence using dichlorotriazinylaminofluorescein (DTAF). I. Preparation and fractionation of labelled IgG. J Immunol Methods. 1976;13(3-4):305–320. doi: 10.1016/0022-1759(76)90078-8. [DOI] [PubMed] [Google Scholar]
  4. Bloem J., Starink M., Bär-Gilissen M. J., Cappenberg T. E. Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures. Appl Environ Microbiol. 1988 Dec;54(12):3113–3121. doi: 10.1128/aem.54.12.3113-3121.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brakenhoff G. J., van der Voort H. T., van Spronsen E. A., Linnemans W. A., Nanninga N. Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature. 1985 Oct 24;317(6039):748–749. doi: 10.1038/317748a0. [DOI] [PubMed] [Google Scholar]
  6. Bratbak G., Dundas I. Bacterial dry matter content and biomass estimations. Appl Environ Microbiol. 1984 Oct;48(4):755–757. doi: 10.1128/aem.48.4.755-757.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hagström A., Larsson U., Hörstedt P., Normark S. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl Environ Microbiol. 1979 May;37(5):805–812. doi: 10.1128/aem.37.5.805-812.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krambeck C., Krambeck H. J., Overbeck J. Microcomputer-assisted biomass determination of plankton bacteria on scanning electron micrographs. Appl Environ Microbiol. 1981 Jul;42(1):142–149. doi: 10.1128/aem.42.1.142-149.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sherr B. F., Sherr E. B., Fallon R. D. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol. 1987 May;53(5):958–965. doi: 10.1128/aem.53.5.958-965.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sherr B. F., Sherr E. B., McDaniel J. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl Environ Microbiol. 1992 Aug;58(8):2381–2385. doi: 10.1128/aem.58.8.2381-2385.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sieracki M. E., Johnson P. W., Sieburth J. M. Detection, enumeration, and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy. Appl Environ Microbiol. 1985 Apr;49(4):799–810. doi: 10.1128/aem.49.4.799-810.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sieracki M. E., Reichenbach S. E., Webb K. L. Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis. Appl Environ Microbiol. 1989 Nov;55(11):2762–2772. doi: 10.1128/aem.55.11.2762-2772.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Viles C. L., Sieracki M. E. Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy. Appl Environ Microbiol. 1992 Feb;58(2):584–592. doi: 10.1128/aem.58.2.584-592.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES