Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Mar;61(3):1045–1053. doi: 10.1128/aem.61.3.1045-1053.1995

Effect of Phosphate Limitation on Synthesis of Periplasmic Cyclic (beta)-(1,2)-Glucans

M W Breedveld, A J Benesi, M L Marco, K J Miller
PMCID: PMC1388387  PMID: 16534955

Abstract

Rhizobium meliloti and Agrobacterium tumefaciens synthesize periplasmic cyclic (beta)-(1,2)-glucans during adaptation to hypoosmotic environments. It also appears that these glucans provide important functions during the interactions of these bacteria with plant hosts. A large fraction of these glucans may become modified with anionic substituents such as phosphoglycerol or succinic acid; however, the role(s) of these substituents is unknown. In this study, we show that growth of these bacteria in phosphate-limited media leads to a dramatic reduction in the levels of phosphoglycerol substituents present on the periplasmic cyclic (beta)-(1,2)-glucans. Under these growth conditions, R. meliloti 1021 was found to synthesize anionic cyclic (beta)-(1,2)-glucans containing only succinic acid substituents. Similar results were obtained with R. meliloti 7154 (an exoH mutant which lacks the ability to succinylate its high-molecular-weight exopolysaccharide), revealing that succinylation of the cyclic (beta)-(1,2)-glucans is mediated by an enzyme system distinct from that involved in the succinylation of exopolysaccharide. In contrast, when A. tumefaciens C58 was grown in a phosphate-limited medium, it was found to synthesize only neutral cyclic (beta)-(1,2)-glucans.

Full Text

The Full Text of this article is available as a PDF (561.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altabe S. G., Iñn de Iannino N., de Mendoza D., Ugalde R. A. New osmoregulated beta(1-3),beta(1-6) glucosyltransferase(s) in Azospirillum brasilense. J Bacteriol. 1994 Aug;176(16):4890–4898. doi: 10.1128/jb.176.16.4890-4898.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becker A., Kleickmann A., Arnold W., Pühler A. Analysis of the Rhizobium meliloti exoH/exoK/exoL fragment: ExoK shows homology to excreted endo-beta-1,3-1,4-glucanases and ExoH resembles membrane proteins. Mol Gen Genet. 1993 Apr;238(1-2):145–154. doi: 10.1007/BF00279541. [DOI] [PubMed] [Google Scholar]
  3. Breedveld M. W., Miller K. J. Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol Rev. 1994 Jun;58(2):145–161. doi: 10.1128/mr.58.2.145-161.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breedveld M. W., Yoo J. S., Reinhold V. N., Miller K. J. Synthesis of glycerophosphorylated cyclic beta-(1,2)-glucans by Rhizobium meliloti ndv mutants. J Bacteriol. 1994 Feb;176(4):1047–1051. doi: 10.1128/jb.176.4.1047-1051.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breedveld M. W., Zevenhuizen L. P., Zehnder A. J. Excessive excretion of cyclic beta-(1,2)-glucan by Rhizobium trifolii TA-1. Appl Environ Microbiol. 1990 Jul;56(7):2080–2086. doi: 10.1128/aem.56.7.2080-2086.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cangelosi G. A., Martinetti G., Nester E. W. Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic beta-1,2-glucan. J Bacteriol. 1990 Apr;172(4):2172–2174. doi: 10.1128/jb.172.4.2172-2174.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Douglas C. J., Staneloni R. J., Rubin R. A., Nester E. W. Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bacteriol. 1985 Mar;161(3):850–860. doi: 10.1128/jb.161.3.850-860.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dylan T., Helinski D. R., Ditta G. S. Hypoosmotic adaptation in Rhizobium meliloti requires beta-(1----2)-glucan. J Bacteriol. 1990 Mar;172(3):1400–1408. doi: 10.1128/jb.172.3.1400-1408.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dylan T., Ielpi L., Stanfield S., Kashyap L., Douglas C., Yanofsky M., Nester E., Helinski D. R., Ditta G. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4403–4407. doi: 10.1073/pnas.83.12.4403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geiger O., Weissborn A. C., Kennedy E. P. Biosynthesis and excretion of cyclic glucans by Rhizobium meliloti 1021. J Bacteriol. 1991 May;173(9):3021–3024. doi: 10.1128/jb.173.9.3021-3024.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glucksmann M. A., Reuber T. L., Walker G. C. Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J Bacteriol. 1993 Nov;175(21):7045–7055. doi: 10.1128/jb.175.21.7045-7055.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Israel D. W. Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol. 1987 Jul;84(3):835–840. doi: 10.1104/pp.84.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kennedy E. P. Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1092–1095. doi: 10.1073/pnas.79.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kennedy E. P., Rumley M. K. Osmotic regulation of biosynthesis of membrane-derived oligosaccharides in Escherichia coli. J Bacteriol. 1988 Jun;170(6):2457–2461. doi: 10.1128/jb.170.6.2457-2461.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Leigh J. A., Reed J. W., Hanks J. F., Hirsch A. M., Walker G. C. Rhizobium meliloti mutants that fail to succinylate their calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell. 1987 Nov 20;51(4):579–587. doi: 10.1016/0092-8674(87)90127-9. [DOI] [PubMed] [Google Scholar]
  17. Loubens I., Debarbieux L., Bohin A., Lacroix J. M., Bohin J. P. Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae. Mol Microbiol. 1993 Oct;10(2):329–340. doi: 10.1111/j.1365-2958.1993.tb01959.x. [DOI] [PubMed] [Google Scholar]
  18. McKay I. A., Djordjevic M. A. Production and Excretion of Nod Metabolites by Rhizobium leguminosarum bv. trifolii Are Disrupted by the Same Environmental Factors That Reduce Nodulation in the Field. Appl Environ Microbiol. 1993 Oct;59(10):3385–3392. doi: 10.1128/aem.59.10.3385-3392.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miller K. J., Gore R. S., Benesi A. J. Phosphoglycerol substituents present on the cyclic beta-1,2-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol. J Bacteriol. 1988 Oct;170(10):4569–4575. doi: 10.1128/jb.170.10.4569-4575.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Miller K. J., Kennedy E. P., Reinhold V. N. Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science. 1986 Jan 3;231(4733):48–51. doi: 10.1126/science.3941890. [DOI] [PubMed] [Google Scholar]
  21. Miller K. J., Reinhold V. N., Weissborn A. C., Kennedy E. P. Cyclic glucans produced by Agrobacterium tumefaciens are substituted with sn-1-phosphoglycerol residues. Biochim Biophys Acta. 1987 Jul 10;901(1):112–118. doi: 10.1016/0005-2736(87)90262-8. [DOI] [PubMed] [Google Scholar]
  22. Reinhold B. B., Chan S. Y., Reuber T. L., Marra A., Walker G. C., Reinhold V. N. Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021. J Bacteriol. 1994 Apr;176(7):1997–2002. doi: 10.1128/jb.176.7.1997-2002.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Swart S., Lugtenberg B. J., Smit G., Kijne J. W. Rhicadhesin-mediated attachment and virulence of an Agrobacterium tumefaciens chvB mutant can be restored by growth in a highly osmotic medium. J Bacteriol. 1994 Jun;176(12):3816–3819. doi: 10.1128/jb.176.12.3816-3819.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tao H., Brewin N. J., Noel K. D. Rhizobium leguminosarum CFN42 lipopolysaccharide antigenic changes induced by environmental conditions. J Bacteriol. 1992 Apr;174(7):2222–2229. doi: 10.1128/jb.174.7.2222-2229.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zevenhuizen L. P., van Veldhuizen A., Fokkens R. H. Re-examination of cellular cyclic beta-1,2-glucans of Rhizobiaceae: distribution of ring sizes and degrees of glycerol-1-phosphate substitution. Antonie Van Leeuwenhoek. 1990 Apr;57(3):173–178. doi: 10.1007/BF00403952. [DOI] [PubMed] [Google Scholar]
  26. Zhan H. J., Lee C. C., Leigh J. A. Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations. J Bacteriol. 1991 Nov;173(22):7391–7394. doi: 10.1128/jb.173.22.7391-7394.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zhan H. J., Levery S. B., Lee C. C., Leigh J. A. A second exopolysaccharide of Rhizobium meliloti strain SU47 that can function in root nodule invasion. Proc Natl Acad Sci U S A. 1989 May;86(9):3055–3059. doi: 10.1073/pnas.86.9.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zorreguieta A., Cavaignac S., Geremia R. A., Ugalde R. A. Osmotic regulation of beta(1-2) glucan synthesis in members of the family Rhizobiaceae. J Bacteriol. 1990 Aug;172(8):4701–4704. doi: 10.1128/jb.172.8.4701-4704.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES