Abstract
Glutathione-S-transferase (GST) activity was determined in 36 species of rhizosphere bacteria with the substrate 1-chloro-2,4-dinitrobenzene (CDNB) and in 18 strains with the herbicide alachlor. Highest levels of CDNB-GST activity (60 to 222 nmol (middot) h(sup-1) (middot) mg(sup-1)) were found in gram-negative bacteria: Enterobacter cloacae, Citrobacter diversus, Klebsiella planticola, Pseudomonas cepacia, Pseudomonas fluorescens, Pseudomonas putida, and Xanthomonas campestris. There was very low CDNB-GST activity in the gram-positive strains. Rapid metabolism of CDNB-glutathione conjugates, attributable to high levels of (gamma)-glutamyltranspeptidase, also occurred in the gram-negative bacteria, especially pseudomonads. Alachlor-GST activity detected in cell extracts and whole-cell suspensions of some strains of the families Enterobacteriaceae and Pseudomonaceae was 50- to 100-fold lower than CDNB-GST activity (0.5 to 2.5 nmol (middot) h(sup-1) (middot) mg(sup-1)) and was, for the most part, constitutive. The glutathione-alachlor conjugate was rarely detected. Cysteineglycine and/or cysteine conjugates were the major products of alachlor-GST metabolism. Whole-cell suspensions of certain Pseudomonas spp. dechlorinated from 20 to 75% of 100 (mu)M alachlor in 24 h. Results indicate that rhizosphere bacteria, especially fluorescent pseudomonads, may play an important role in the degradation of xenobiotics such as alachlor via GST-mediated reactions.
Full Text
The Full Text of this article is available as a PDF (254.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson M. P., Gronwald J. W. Atrazine Resistance in a Velvetleaf (Abutilon theophrasti) Biotype Due to Enhanced Glutathione S-Transferase Activity. Plant Physiol. 1991 May;96(1):104–109. doi: 10.1104/pp.96.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Di Ilio C., Aceto A., Piccolomini R., Allocati N., Faraone A., Cellini L., Ravagnan G., Federici G. Purification and characterization of three forms of glutathione transferase from Proteus mirabilis. Biochem J. 1988 Nov 1;255(3):971–975. doi: 10.1042/bj2550971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fahey R. C., Brown W. C., Adams W. B., Worsham M. B. Occurrence of glutathione in bacteria. J Bacteriol. 1978 Mar;133(3):1126–1129. doi: 10.1128/jb.133.3.1126-1129.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
- Hsu T. S., Bartha R. Accelerated mineralization of two organophosphate insecticides in the rhizosphere. Appl Environ Microbiol. 1979 Jan;37(1):36–41. doi: 10.1128/aem.37.1.36-41.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- La Roche S. D., Leisinger T. Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family. J Bacteriol. 1990 Jan;172(1):164–171. doi: 10.1128/jb.172.1.164-171.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsen G. L., Bakke J. E. Metabolism of mercapturic acid-pathway metabolites of 2-chloro-N-isopropylacetanilide (propachlor) by gastrointestinal bacteria. Xenobiotica. 1983 Feb;13(2):115–126. doi: 10.3109/00498258309052245. [DOI] [PubMed] [Google Scholar]
- Liu S. Y., Zheng Z., Zhang R., Bollag J. M. Sorption and metabolism of metolachlor by a bacterial community. Appl Environ Microbiol. 1989 Mar;55(3):733–740. doi: 10.1128/aem.55.3.733-740.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novick N. J., Alexander M. Cometabolism of low concentrations of propachlor, alachlor, and cycloate in sewage and lake water. Appl Environ Microbiol. 1985 Apr;49(4):737–743. doi: 10.1128/aem.49.4.737-743.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ORLOWSKI M., MEISTER A. GAMMA-GLUTAMYL-P-NITROANILIDE: A NEW CONVENIENT SUBSTRATE FOR DETERMINATION AND STUDY OF L- AND D-GAMMA-GLUTAMYLTRANSPEPTIDASE ACTIVITIES. Biochim Biophys Acta. 1963 Aug 6;73:679–681. doi: 10.1016/0006-3002(63)90348-2. [DOI] [PubMed] [Google Scholar]
- Reddy B. R., Sethunathan N. Mineralization of parathion in the rice rhizosphere. Appl Environ Microbiol. 1983 Mar;45(3):826–829. doi: 10.1128/aem.45.3.826-829.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villarreal D. T., Turco R. F., Konopka A. Propachlor degradation by a soil bacterial community. Appl Environ Microbiol. 1991 Aug;57(8):2135–2140. doi: 10.1128/aem.57.8.2135-2140.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walton B. T., Anderson T. A. Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites. Appl Environ Microbiol. 1990 Apr;56(4):1012–1016. doi: 10.1128/aem.56.4.1012-1016.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
