Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1298–1302. doi: 10.1128/aem.61.4.1298-1302.1995

Biosynthesis of l-Phenylalanine and l-Tyrosine in the Actinomycete Amycolatopsis methanolica

A Abou-Zeid, G Euverink, G I Hessels, R A Jensen, L Dijkhuizen
PMCID: PMC1388407  PMID: 16534989

Abstract

Auxotrophic mutants of the actinomycete Amycolatopsis methanolica requiring l-Phe or l-Tyr were isolated and identified as strains lacking prephenate dehydratase (strain GH71) or arogenate dehydrogenase (strain GH70), respectively. A. methanolica thus employs single pathways only for the biosynthesis of these aromatic amino acids. Anion-exchange chromatography of extracts revealed two peaks with Phe as well as Tyr aminotransferase (AT) activity (Phe/Tyr ATI and Phe/Tyr ATII) and three peaks with prephenate AT activity (Ppa ATI to Ppa ATIII). Phe/Tyr ATI and Ppa ATI coeluted and appear to function as the A. methanolica branched-chain amino acid AT. Ppa ATII probably functions as the aspartate AT. Mutant studies showed that Phe/Tyr ATII is the dominant AT in l-Phe biosynthesis and in l-Tyr catabolism but not in l-Tyr biosynthesis. Biochemical studies showed that Ppa ATIII is highly specific for prephenate and provided evidence that Ppa ATIII is the dominant AT in l-Tyr biosynthesis.

Full Text

The Full Text of this article is available as a PDF (211.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley R. The shikimate pathway--a metabolic tree with many branches. Crit Rev Biochem Mol Biol. 1990;25(5):307–384. doi: 10.3109/10409239009090615. [DOI] [PubMed] [Google Scholar]
  2. Bonner C. A., Fischer R. S., Ahmad S., Jensen R. A. Remnants of an ancient pathway to L-phenylalanine and L-tyrosine in enteric bacteria: evolutionary implications and biotechnological impact. Appl Environ Microbiol. 1990 Dec;56(12):3741–3747. doi: 10.1128/aem.56.12.3741-3747.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonner C., Jensen R. Prephenate aminotransferase. Methods Enzymol. 1987;142:479–487. doi: 10.1016/s0076-6879(87)42059-4. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Collier R. H., Kohlhaw G. Nonidentity of the aspartate and the aromatic aminotransferase components of transaminase A in Escherichia coli. J Bacteriol. 1972 Oct;112(1):365–371. doi: 10.1128/jb.112.1.365-371.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dewick P. M. The biosynthesis of shikimate metabolites. Nat Prod Rep. 1989 Jun;6(3):263–290. doi: 10.1039/np9890600263. [DOI] [PubMed] [Google Scholar]
  7. Euverink G. J., Hessels G. I., Vrijbloed J. W., Coggins J. R., Dijkhuizen L. Purification and characterization of a dual function 3-dehydroquinate dehydratase from Amycolatopsis methanolica. J Gen Microbiol. 1992 Nov;138(11):2449–2457. doi: 10.1099/00221287-138-11-2449. [DOI] [PubMed] [Google Scholar]
  8. Fazel A. M., Jensen R. A. Aromatic aminotransferases in coryneform bacteria. J Bacteriol. 1979 Nov;140(2):580–587. doi: 10.1128/jb.140.2.580-587.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fazel A. M., Jensen R. A. Obligatory biosynthesis of L-tyrosine via the pretyrosine branchlet in coryneform bacteria. J Bacteriol. 1979 Jun;138(3):805–815. doi: 10.1128/jb.138.3.805-815.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fischer R., Jensen R. Prephenate dehydrogenase (monofunctional). Methods Enzymol. 1987;142:503–507. doi: 10.1016/s0076-6879(87)42062-4. [DOI] [PubMed] [Google Scholar]
  11. Jensen R. A., Zamir L., Saint Pierre M., Patel N., Pierson D. L. Isolation and preparation of pretyrosine, accumulated as a dead-end metabolite by Neurospora crassa. J Bacteriol. 1977 Dec;132(3):896–903. doi: 10.1128/jb.132.3.896-903.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keller B., Keller E., Görisch H., Lingens F. Zur Biosynthese von Phenylalanin und Tyrosin in Streptomyceten. Hoppe Seylers Z Physiol Chem. 1983 Apr;364(4):455–459. [PubMed] [Google Scholar]
  13. Kittell B. L., Helinski D. R., Ditta G. S. Aromatic aminotransferase activity and indoleacetic acid production in Rhizobium meliloti. J Bacteriol. 1989 Oct;171(10):5458–5466. doi: 10.1128/jb.171.10.5458-5466.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kradolfer P., Niederberger P., Hütter R. Tryptophan degradation in Saccharomyces cerevisiae: characterization of two aromatic aminotransferases. Arch Microbiol. 1982 Dec 11;133(3):242–248. doi: 10.1007/BF00415010. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  16. Mavrides C., Comerton M. Aminotransferases for aromatic amino acids and aspartate in Bacillus subtilis. Biochim Biophys Acta. 1978 May 11;524(1):60–67. doi: 10.1016/0005-2744(78)90103-1. [DOI] [PubMed] [Google Scholar]
  17. Patel N., Pierson D. L., Jensen R. A. Dual enzymatic routes to L-tyrosine and L-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J Biol Chem. 1977 Aug 25;252(16):5839–5846. [PubMed] [Google Scholar]
  18. Speth A. R., Hund H. K., Lingens F. Terminal phenylalanine and tyrosine biosynthesis of Microtetraspora glauca. Biol Chem Hoppe Seyler. 1989 Jun;370(6):591–599. doi: 10.1515/bchm3.1989.370.1.591. [DOI] [PubMed] [Google Scholar]
  19. Whitaker R. J., Gaines C. G., Jensen R. A. A multispecific quintet of aromatic aminotransferases that overlap different biochemical pathways in Pseudomonas aeruginosa. J Biol Chem. 1982 Nov 25;257(22):13550–13556. [PubMed] [Google Scholar]
  20. Xia T. H., Chiao J. S. Regulation of the biosynthetic pathway of aromatic amino acids in Nocardia mediterranei. Biochim Biophys Acta. 1989 Apr 25;991(1):6–11. doi: 10.1016/0304-4165(89)90020-2. [DOI] [PubMed] [Google Scholar]
  21. Xing R. Y., Whitman W. B. Characterization of amino acid aminotransferases of Methanococcus aeolicus. J Bacteriol. 1992 Jan;174(2):541–548. doi: 10.1128/jb.174.2.541-548.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. de Boer L., Dijkhuizen L., Grobben G., Goodfellow M., Stackebrandt E., Parlett J. H., Whitehead D., Witt D. Amycolatopsis methanolica sp. nov., a facultatively methylotrophic actinomycete. Int J Syst Bacteriol. 1990 Apr;40(2):194–204. doi: 10.1099/00207713-40-2-194. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES