Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1303–1310. doi: 10.1128/aem.61.4.1303-1310.1995

Enzyme Basis for pH Regulation of Citrate and Pyruvate Metabolism by Leuconostoc oenos

A Ramos, J S Lolkema, W N Konings, H Santos
PMCID: PMC1388408  PMID: 16534990

Abstract

Citrate and pyruvate metabolism by nongrowing cells of Leuconostoc oenos was investigated. (sup13)C nuclear magnetic resonance (NMR) spectroscopy was used to elucidate the pathway of citrate breakdown and to probe citrate or pyruvate utilization, noninvasively, in living cell suspensions. The utilization of isotopically enriched substrates allowed us to account for the end products derived from the metabolism of endogenous reserves. The effect of environmental parameters, e.g., pH, gas atmosphere, and presence of malate, on the end products of citrate utilization was studied. Approximately 10% of the citrate supplied was converted to aspartate which remained inside the cells. A metabolic shift with pH was observed, with acetoin production being favored at pH 4, whereas lactate and acetate production increased significantly at higher pH values. The information obtained with NMR was complemented with studies on the relevant enzyme activities in the metabolic pathway of citrate breakdown. The intracellular pH of the cells was strongly dependent on the external pH; this result, together with the determination of the pH profile of the enzymic activities, allowed us to establish the basis for pH regulation; lactate dehydrogenase activity was optimal at pH 7, whereas the acetoin-forming enzymes displayed maximal activities below pH 5. Citrate utilization was also monitored in dilute cell suspensions for comparison with NMR experiments performed with dense suspensions.

Full Text

The Full Text of this article is available as a PDF (259.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cavin J. F., Prevost H., Lin J., Schmitt P., Divies C. Medium for Screening Leuconostoc oenos Strains Defective in Malolactic Fermentation. Appl Environ Microbiol. 1989 Mar;55(3):751–753. doi: 10.1128/aem.55.3.751-753.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cogan T. M., O'dowd M., Mellerick D. Effects of pH and Sugar on Acetoin Production from Citrate by Leuconostoc lactis. Appl Environ Microbiol. 1981 Jan;41(1):1–8. doi: 10.1128/aem.41.1.1-8.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drinan D. F., Robin S., Cogan T. M. Citric acid metabolism in hetero- and homofermentative lactic acid bacteria. Appl Environ Microbiol. 1976 Apr;31(4):481–486. doi: 10.1128/aem.31.4.481-486.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FitzGerald R. J., Doonan S., McKay L. L., Cogan T. M. Intracellular pH and the role of D-lactate dehydrogenase in the production of metabolic end products by Leuconostoc lactis. J Dairy Res. 1992 Aug;59(3):359–367. doi: 10.1017/s0022029900030636. [DOI] [PubMed] [Google Scholar]
  5. Fornachon J. C. Influence of different yeasts on the growth of lactic acid bacteria in wine. J Sci Food Agric. 1968 Jul;19(7):374–378. doi: 10.1002/jsfa.2740190705. [DOI] [PubMed] [Google Scholar]
  6. Goodwin S., Zeikus J. G. Physiological adaptations of anaerobic bacteria to low pH: metabolic control of proton motive force in Sarcina ventriculi. J Bacteriol. 1987 May;169(5):2150–2157. doi: 10.1128/jb.169.5.2150-2157.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. McDonald L. C., Fleming H. P., Hassan H. M. Acid Tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl Environ Microbiol. 1990 Jul;56(7):2120–2124. doi: 10.1128/aem.56.7.2120-2124.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Poolman B., Smid E. J., Konings W. N. Kinetic properties of a phosphate-bond-driven glutamate-glutamine transport system in Streptococcus lactis and Streptococcus cremoris. J Bacteriol. 1987 Jun;169(6):2755–2761. doi: 10.1128/jb.169.6.2755-2761.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ramos A., Jordan K. N., Cogan T. M., Santos H. C Nuclear Magnetic Resonance Studies of Citrate and Glucose Cometabolism by Lactococcus lactis. Appl Environ Microbiol. 1994 Jun;60(6):1739–1748. doi: 10.1128/aem.60.6.1739-1748.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ramos A., Poolman B., Santos H., Lolkema J. S., Konings W. N. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. J Bacteriol. 1994 Aug;176(16):4899–4905. doi: 10.1128/jb.176.16.4899-4905.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Salou P., Loubiere P., Pareilleux A. Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose. Appl Environ Microbiol. 1994 May;60(5):1459–1466. doi: 10.1128/aem.60.5.1459-1466.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Speckman R. A., Collins E. B. Diacetyl biosynthesis in Streptococcus diacetilactis and Leuconostoc citrovorum. J Bacteriol. 1968 Jan;95(1):174–180. doi: 10.1128/jb.95.1.174-180.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Starrenburg M. J., Hugenholtz J. Citrate Fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol. 1991 Dec;57(12):3535–3540. doi: 10.1128/aem.57.12.3535-3540.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stormer F. C. 2,3-Butanediol biosynthetic system in Aerobacter aerogenes. Methods Enzymol. 1975;41:518–532. doi: 10.1016/s0076-6879(75)41108-9. [DOI] [PubMed] [Google Scholar]
  16. Veiga-Da-Cunha M., Firme P., Romão M. V., Santos H. Application of C Nuclear Magnetic Resonance To Elucidate the Unexpected Biosynthesis of Erythritol by Leuconostoc oenos. Appl Environ Microbiol. 1992 Jul;58(7):2271–2279. doi: 10.1128/aem.58.7.2271-2279.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Verhue W. M., Tjan F. S. Study of the Citrate Metabolism of Lactococcus lactis subsp. lactis Biovar Diacetylactis by Means of C Nuclear Magnetic Resonance. Appl Environ Microbiol. 1991 Nov;57(11):3371–3377. doi: 10.1128/aem.57.11.3371-3377.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES