Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Apr;61(4):1458–1468. doi: 10.1128/aem.61.4.1458-1468.1995

Analysis of Factors Affecting the Accuracy, Reproducibility, and Interpretation of Microbial Community Carbon Source Utilization Patterns

S K Haack, H Garchow, M J Klug, L J Forney
PMCID: PMC1388414  PMID: 16534996

Abstract

We determined factors that affect responses of bacterial isolates and model bacterial communities to the 95 carbon substrates in Biolog microtiter plates. For isolates and communities of three to six bacterial strains, substrate oxidation rates were typically nonlinear and were delayed by dilution of the inoculum. When inoculum density was controlled, patterns of positive and negative responses exhibited by microbial communities to each of the carbon sources were reproducible. Rates and extents of substrate oxidation by the communities were also reproducible but were not simply the sum of those exhibited by community members when tested separately. Replicates of the same model community clustered when analyzed by principal-components analysis (PCA), and model communities with different compositions were clearly separated on the first PCA axis, which accounted for >60% of the dataset variation. PCA discrimination among different model communities depended on the extent to which specific substrates were oxidized. However, the substrates interpreted by PCA to be most significant in distinguishing the communities changed with reading time, reflecting the nonlinearity of substrate oxidation rates. Although whole-community substrate utilization profiles were reproducible signatures for a given community, the extent of oxidation of specific substrates and the numbers or activities of microorganisms using those substrates in a given community were not correlated. Replicate soil samples varied significantly in the rate and extent of oxidation of seven tested substrates, suggesting microscale heterogeneity in composition of the soil microbial community.

Full Text

The Full Text of this article is available as a PDF (316.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Garland J. L., Mills A. L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol. 1991 Aug;57(8):2351–2359. doi: 10.1128/aem.57.8.2351-2359.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Haack S. K., Garchow H., Odelson D. A., Forney L. J., Klug M. J. Accuracy, reproducibility, and interpretation of Fatty Acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol. 1994 Jul;60(7):2483–2493. doi: 10.1128/aem.60.7.2483-2493.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES