Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 May;61(5):1699–1705. doi: 10.1128/aem.61.5.1699-1705.1995

Influence of Nonionic Surfactants on Bioavailability and Biodegradation of Polycyclic Aromatic Hydrocarbons

F Volkering, A M Breure, J G van Andel, W H Rulkens
PMCID: PMC1388434  PMID: 16535016

Abstract

The presence of the synthetic nonionic surfactants Triton X-100, Tergitol NPX, Brij 35, and Igepal CA-720 resulted not only in increased apparent solubilities but also in increased maximal rates of dissolution of crystalline naphthalene and phenanthrene. A model based on the assumption that surfactant micelles are formed and act as a separate phase underestimated the dissolution rates; this led to the conclusion that surfactants present at concentrations higher than the critical micelle concentration affect the dissolution process. This conclusion was confirmed by the results of batch growth experiments, which showed that the rates of biodegradation of naphthalene and phenanthrene in the dissolution-limited growth phase were increased by the addition of surfactant, indicating that the dissolution rates were higher than the rates in the absence of surfactant. In activity and growth experiments, no toxic effects of the surfactants at concentrations up to 10 g liter(sup-1) were observed. Substrate present in the micellar phase was shown to be not readily available for degradation by the microorganisms. This finding has important consequences for the application of (bio)surfactants in biological soil remediation.

Full Text

The Full Text of this article is available as a PDF (264.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Guerin W. F., Jones G. E. Mineralization of phenanthrene by a Mycobacterium sp. Appl Environ Microbiol. 1988 Apr;54(4):937–944. doi: 10.1128/aem.54.4.937-944.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Oberbremer A., Müller-Hurtig R., Wagner F. Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol. 1990 Jan;32(4):485–489. doi: 10.1007/BF00903788. [DOI] [PubMed] [Google Scholar]
  3. Tiehm A. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol. 1994 Jan;60(1):258–263. doi: 10.1128/aem.60.1.258-263.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Weber F. J., Ooijkaas L. P., Schemen R. M., Hartmans S., de Bont J. A. Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl Environ Microbiol. 1993 Oct;59(10):3502–3504. doi: 10.1128/aem.59.10.3502-3504.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Wilkinson T. G., Harrison D. E. The affinity for methane and methanol of mixed cultures grown on methane in continuous culture. J Appl Bacteriol. 1973 Jun;36(2):309–313. doi: 10.1111/j.1365-2672.1973.tb04107.x. [DOI] [PubMed] [Google Scholar]
  6. Zhang Y., Miller R. M. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol. 1992 Oct;58(10):3276–3282. doi: 10.1128/aem.58.10.3276-3282.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES