Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 May;61(5):1745–1749. doi: 10.1128/aem.61.5.1745-1749.1995

Influence of Two Plant Species (Flax and Tomato) on the Distribution of Nitrogen Dissimilative Abilities within Fluorescent Pseudomonas spp

A Clays-Josserand, P Lemanceau, L Philippot, R Lensi
PMCID: PMC1388436  PMID: 16535018

Abstract

The distribution of nitrogen-dissimilative abilities among 317 isolates of fluorescent pseudomonads was studied. These strains were isolated from an uncultivated soil and from the rhizosphere, rhizoplane, and root tissue of two plant species (flax and tomato) cultivated on this same soil. The isolates were distributed into two species, Pseudomonas fluorescens (45.1%) and Pseudomonas putida (40.4%), plus an intermediate type (14.5%). P. fluorescens was the species with the greatest proportion of isolates in the root compartments and the greatest proportion of dissimilatory and denitrifying strains. According to their ability to dissimilate nitrogen, the isolates have been distributed into nondissimilatory and dissimilatory strains, nitrate reducers and true denitrifiers with or without N(inf2)O reductase. The proportion of dissimilatory isolates was significantly enhanced in the compartments affected by flax and tomato roots (55% in uncultivated soil and 90 and 82% in the root tissue of flax and tomato, respectively). Among these strains, the proportion of denitrifiers gradually and significantly increased in the root vicinity of tomato (44, 68, 75, and 94% in uncultivated soil, rhizosphere, rhizoplane, and root tissue, respectively) and was higher in the flax rhizoplane (66%) than in the uncultivated soil. A higher proportion of N(inf2)O reducers was also found in the root compartments. This result was particularly clear for tomato. It is hypothesized that denitrification could be a selective advantage for the denitrifiers in the root environment and that this process could contribute to modify the specific composition of the bacterial communities in the rhizosphere.

Full Text

The Full Text of this article is available as a PDF (176.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gamble T. N., Betlach M. R., Tiedje J. M. Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol. 1977 Apr;33(4):926–939. doi: 10.1128/aem.33.4.926-939.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Knowles R. Denitrification. Microbiol Rev. 1982 Mar;46(1):43–70. doi: 10.1128/mr.46.1.43-70.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Körner H., Zumft W. G. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol. 1989 Jul;55(7):1670–1676. doi: 10.1128/aem.55.7.1670-1676.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lemanceau P., Corberand T., Gardan L., Latour X., Laguerre G., Boeufgras J., Alabouvette C. Effect of Two Plant Species, Flax (Linum usitatissinum L.) and Tomato (Lycopersicon esculentum Mill.), on the Diversity of Soilborne Populations of Fluorescent Pseudomonads. Appl Environ Microbiol. 1995 Mar;61(3):1004–1012. doi: 10.1128/aem.61.3.1004-1012.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES