Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 May;61(5):1810–1815. doi: 10.1128/aem.61.5.1810-1815.1995

Two Extremely Thermostable Xylanases of the Hyperthermophilic Bacterium Thermotoga maritima MSB8

C Winterhalter, W Liebl
PMCID: PMC1388439  PMID: 16535021

Abstract

During growth with xylose or xylan as the source of carbon, xylanase production by Thermotoga maritima MSB8 was enhanced about 10-fold compared with growth with glucose or starch. Two extremely thermostable endoxylanases (1,4-(beta)-d-xylan-xylanohydrolase, EC 3.2.1.8), designated XynA and XynB, were identified and purified from cells of this organism. XynA and XynB occurred as proteins with apparent molecular masses of about 120 and 40 kDa, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Maximum activity at the optimal pH (pH 6.2 and pH 5.4 for XynA and XynB, respectively) was measured at about 92(deg)C for XynA (10-min assay) and at about 105(deg)C for XynB (5-min assay). XynB activity was stimulated twofold by the addition of 500 mM NaCl, while XynA displayed maximum activity without the addition of salt. Both xylanases were tolerant of relatively high salt concentrations. At 2 M (about 12% wt/vol) NaCl, XynA and XynB retained 49 and 65%, respectively, of their maximum activities. In contrast to XynB, XynA was able to adsorb to microcrystalline cellulose. Antibodies raised against a recombinant truncated XynA protein cross-reacted with XynB, indicating that the enzymes may have sequence or structural similarities. Part of the xylanase activity appeared to be associated with the outer membrane of T. maritima cells, since more than 40% of the total xylanase activity present in the crude cellular extract was found in the membrane fraction after high-speed centrifugation. Most of the membrane-bound activity appeared to be due to the 120-kDa xylanase XynA.

Full Text

The Full Text of this article is available as a PDF (279.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bronnenmeier K., Kern A., Liebl W., Staudenbauer W. L. Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol. 1995 Apr;61(4):1399–1407. doi: 10.1128/aem.61.4.1399-1407.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Béguin P., Aubert J. P. The biological degradation of cellulose. FEMS Microbiol Rev. 1994 Jan;13(1):25–58. doi: 10.1111/j.1574-6976.1994.tb00033.x. [DOI] [PubMed] [Google Scholar]
  3. Coughlan M. P., Hazlewood G. P. beta-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem. 1993 Jun;17(Pt 3):259–289. [PubMed] [Google Scholar]
  4. Coutinho J. B., Gilkes N. R., Warren R. A., Kilburn D. G., Miller R. C., Jr The binding of Cellulomonas fimi endoglucanase C (CenC) to cellulose and Sephadex is mediated by the N-terminal repeats. Mol Microbiol. 1992 May;6(9):1243–1252. doi: 10.1111/j.1365-2958.1992.tb01563.x. [DOI] [PubMed] [Google Scholar]
  5. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Liebl W., Feil R., Gabelsberger J., Kellermann J., Schleifer K. H. Purification and characterization of a novel thermostable 4-alpha-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. Eur J Biochem. 1992 Jul 1;207(1):81–88. doi: 10.1111/j.1432-1033.1992.tb17023.x. [DOI] [PubMed] [Google Scholar]
  8. Liebl W., Gabelsberger J., Schleifer K. H. Comparative amino acid sequence analysis of Thermotoga maritima beta-glucosidase (BglA) deduced from the nucleotide sequence of the gene indicates distant relationship between beta-glucosidases of the BGA family and other families of beta-1,4-glycosyl hydrolases. Mol Gen Genet. 1994 Jan;242(1):111–115. doi: 10.1007/BF00277355. [DOI] [PubMed] [Google Scholar]
  9. Lüthi E., Jasmat N. B., Bergquist P. L. Xylanase from the extremely thermophilic bacterium "Caldocellum saccharolyticum": overexpression of the gene in Escherichia coli and characterization of the gene product. Appl Environ Microbiol. 1990 Sep;56(9):2677–2683. doi: 10.1128/aem.56.9.2677-2683.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ruttersmith L. D., Daniel R. M. Thermostable cellobiohydrolase from the thermophilic eubacterium Thermotoga sp. strain FjSS3-B.1. Purification and properties. Biochem J. 1991 Aug 1;277(Pt 3):887–890. doi: 10.1042/bj2770887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sakka K., Kojima Y., Kondo T., Karita S., Ohmiya K., Shimada K. Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase A: identification of catalytic and cellulose binding domains. Biosci Biotechnol Biochem. 1993 Feb;57(2):273–277. doi: 10.1271/bbb.57.273. [DOI] [PubMed] [Google Scholar]
  12. Schumann J., Wrba A., Jaenicke R., Stetter K. O. Topographical and enzymatic characterization of amylases from the extremely thermophilic eubacterium Thermotoga maritima. FEBS Lett. 1991 Apr 22;282(1):122–126. doi: 10.1016/0014-5793(91)80459-g. [DOI] [PubMed] [Google Scholar]
  13. Simpson H. D., Haufler U. R., Daniel R. M. An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J. 1991 Jul 15;277(Pt 2):413–417. doi: 10.1042/bj2770413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tuohy M. G., Puls J., Claeyssens M., Vrsanská M., Coughlan M. P. The xylan-degrading enzyme system of Talaromyces emersonii: novel enzymes with activity against aryl beta-D-xylosides and unsubstituted xylans. Biochem J. 1993 Mar 1;290(Pt 2):515–523. doi: 10.1042/bj2900515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Winterhalter C., Heinrich P., Candussio A., Wich G., Liebl W. Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol. 1995 Feb;15(3):431–444. doi: 10.1111/j.1365-2958.1995.tb02257.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES