Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 May;61(5):1833–1838. doi: 10.1128/aem.61.5.1833-1838.1995

Ligninolytic System Formation by Phanerochaete chrysosporium in Air

N Rothschild, Y Hadar, C Dosoretz
PMCID: PMC1388442  PMID: 16535024

Abstract

This study characterizes the effect of oxygen concentration on the synthesis of ligninolytic enzymes by Phanerochaete chrysosporium immobilized on polyurethane foam cubes in a nonimmersed liquid culture system and maintained under different carbon-to-nitrogen (C/N) ratios and levels. Lignin peroxidase (LIP) activity was obtained in cultures exposed to air when the C/N ratio was low (7.47), i.e., when nitrogen levels were high (C/N = 56/45 mM) or carbon levels were low (C/N = 5.6/4.5 mM). At the low C/N ratio, the fungus was carbon starved and did not produce extracellular polysaccharides. At a high C/N ratio (153), i.e., under conditions of excess carbon (nitrogen limitation) (C/N = 56/2.2 mM), cultures exposed to air produced large amounts of polysaccharide, and LIP activity was detected only in cultures exposed to pure oxygen. Under high-nitrogen conditions, LIP production was 1,800 U/liter in cultures exposed to pure oxygen and 1,300 U/liter in cultures exposed to air, with H1 and H2 being the main isoenzymes. The oxygen level did not significantly alter the isoenzyme profile, nor did low-carbon conditions. The formation of manganese peroxidase was generally less affected by the oxygen level than that of LIP but was considerably reduced by a low C/N ratio. The effects of oxygen level and C/N ratio on the synthesis of glyoxal oxidase paralleled their effects on LIP synthesis except in the case of high nitrogen, which totally suppressed glyoxal oxidase activity.

Full Text

The Full Text of this article is available as a PDF (374.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-Lev S. S., Kirk T. K. Effects of molecular oxygen on lignin degradation by Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1981 Mar 31;99(2):373–378. doi: 10.1016/0006-291x(81)91755-1. [DOI] [PubMed] [Google Scholar]
  2. Dass S. B., Reddy C. A. Characterization of extracellular peroxidases produced by acetate-buffered cultures of the lignin-degrading basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett. 1990 Jun 1;57(3):221–224. doi: 10.1111/j.1574-6968.1990.tb04233.x. [DOI] [PubMed] [Google Scholar]
  3. Dosoretz C. G., Rothschild N., Hadar Y. Overproduction of lignin peroxidase by Phanerochaete chrysosporium (BKM-F-1767) under nonlimiting nutrient conditions. Appl Environ Microbiol. 1993 Jun;59(6):1919–1926. doi: 10.1128/aem.59.6.1919-1926.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Faison B. D., Kirk T. K., Farrell R. L. Role of Veratryl Alcohol in Regulating Ligninase Activity in Phanerochaete chrysosporium. Appl Environ Microbiol. 1986 Aug;52(2):251–254. doi: 10.1128/aem.52.2.251-254.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holzbaur E. L., Andrawis A., Tien M. Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1988 Sep 15;155(2):626–633. doi: 10.1016/s0006-291x(88)80541-2. [DOI] [PubMed] [Google Scholar]
  6. Jeffries T. W., Choi S., Kirk T. K. Nutritional Regulation of Lignin Degradation by Phanerochaete chrysosporium. Appl Environ Microbiol. 1981 Aug;42(2):290–296. doi: 10.1128/aem.42.2.290-296.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johnson T. M., Pease E. A., Li J. K., Tien M. Production and characterization of recombinant lignin peroxidase isozyme H2 from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys. 1992 Aug 1;296(2):660–666. doi: 10.1016/0003-9861(92)90624-6. [DOI] [PubMed] [Google Scholar]
  8. Kerem Z., Friesem D., Hadar Y. Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Apr;58(4):1121–1127. doi: 10.1128/aem.58.4.1121-1127.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kersten P. J. Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2936–2940. doi: 10.1073/pnas.87.8.2936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kersten P. J., Kirk T. K. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol. 1987 May;169(5):2195–2201. doi: 10.1128/jb.169.5.2195-2201.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuan I. C., Tien M. Phosphorylation of lignin peroxidases from Phanerochaete chrysosporium. Identification of mannose 6-phosphate. J Biol Chem. 1989 Dec 5;264(34):20350–20355. [PubMed] [Google Scholar]
  12. Lestan D., Lestan M., Perdih A. Physiological Aspects of Biosynthesis of Lignin Peroxidases by Phanerochaete chrysosporium. Appl Environ Microbiol. 1994 Feb;60(2):606–612. doi: 10.1128/aem.60.2.606-612.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Michel F. C., Jr, Grulke E. A., Reddy C. A. Determination of the respiration kinetics for mycelial pellets of Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 May;58(5):1740–1745. doi: 10.1128/aem.58.5.1740-1745.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Orth A. B., Denny M., Tien M. Overproduction of lignin-degrading enzymes by an isolate of Phanerochaete chrysosporium. Appl Environ Microbiol. 1991 Sep;57(9):2591–2596. doi: 10.1128/aem.57.9.2591-2596.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pease E. A., Andrawis A., Tien M. Manganese-dependent peroxidase from Phanerochaete chrysosporium. Primary structure deduced from cDNA sequence. J Biol Chem. 1989 Aug 15;264(23):13531–13535. [PubMed] [Google Scholar]
  16. Shaffer P. M., Arst H. N., Jr, Estberg L., Fernando L., Ly T., Sitter M. An asparaginase of Aspergillus nidulans is subject to oxygen repression in addition to nitrogen metabolite repression. Mol Gen Genet. 1988 May;212(2):337–341. doi: 10.1007/BF00334704. [DOI] [PubMed] [Google Scholar]
  17. Stewart P., Kersten P., Vanden Wymelenberg A., Gaskell J., Cullen D. Lignin peroxidase gene family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome. J Bacteriol. 1992 Aug;174(15):5036–5042. doi: 10.1128/jb.174.15.5036-5042.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tien M., Kirk T. K. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science. 1983 Aug 12;221(4611):661–663. doi: 10.1126/science.221.4611.661. [DOI] [PubMed] [Google Scholar]
  19. Wiame J. M., Grenson M., Arst H. N., Jr Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol. 1985;26:1–88. doi: 10.1016/s0065-2911(08)60394-x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES