Abstract
Many white rot fungi are able to produce de novo veratryl alcohol, which is known to be a cofactor involved in the degradation of lignin, lignin model compounds, and xenobiotic pollutants by lignin peroxidase (LiP). In this study, Mn nutrition was shown to strongly influence the endogenous veratryl alcohol levels in the culture fluids of N-deregulated and N-regulated white rot fungi Bjerkandera sp. strain BOS55 and Phanerochaete chrysosporium BKM-F-1767, respectively. Endogenous veratryl alcohol levels as high as 0.75 mM in Bjerkandera sp. strain BOS55 and 2.5 mM in P. chrysosporium were observed under Mn-deficient conditions. In contrast, veratryl alcohol production was dramatically decreased in cultures supplemented with 33 or 264 (mu)M Mn. The LiP titers, which were highest in Mn-deficient media, were shown to parallel the endogenous veratryl alcohol levels, indicating that these two parameters are related. When exogenous veratryl alcohol was added to Mn-sufficient media, high LiP titers were obtained. Consequently, we concluded that Mn does not regulate LiP expression directly. Instead, LiP titers are enhanced by the increased production of veratryl alcohol. The well-known role of veratryl alcohol in protecting LiP from inactivation by physiological levels of H(inf2)O(inf2) is postulated to be the major reason why LiP is apparently regulated by Mn. Provided that Mn was absent, LiP titers in Bjerkandera sp. strain BOS55 increased with enhanced fungal growth obtained by increasing the nutrient N concentration while veratryl alcohol levels were similar in both N-limited and N-sufficient conditions.
Full Text
The Full Text of this article is available as a PDF (251.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonnarme P., Jeffries T. W. Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi. Appl Environ Microbiol. 1990 Jan;56(1):210–217. doi: 10.1128/aem.56.1.210-217.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boominathan K., Reddy C. A. cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5586–5590. doi: 10.1073/pnas.89.12.5586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. A., Alic M., Gold M. H. Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J Bacteriol. 1991 Jul;173(13):4101–4106. doi: 10.1128/jb.173.13.4101-4106.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. A., Glenn J. K., Gold M. H. Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol. 1990 Jun;172(6):3125–3130. doi: 10.1128/jb.172.6.3125-3130.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cancel A. M., Orth A. B., Tien M. Lignin and veratryl alcohol are not inducers of the ligninolytic system of Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Sep;59(9):2909–2913. doi: 10.1128/aem.59.9.2909-2913.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faison B. D., Kirk T. K., Farrell R. L. Role of Veratryl Alcohol in Regulating Ligninase Activity in Phanerochaete chrysosporium. Appl Environ Microbiol. 1986 Aug;52(2):251–254. doi: 10.1128/aem.52.2.251-254.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glenn J. K., Akileswaran L., Gold M. H. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys. 1986 Dec;251(2):688–696. doi: 10.1016/0003-9861(86)90378-4. [DOI] [PubMed] [Google Scholar]
- Gold M. H., Alic M. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev. 1993 Sep;57(3):605–622. doi: 10.1128/mr.57.3.605-622.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haemmerli S. D., Leisola M. S., Sanglard D., Fiechter A. Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. J Biol Chem. 1986 May 25;261(15):6900–6903. [PubMed] [Google Scholar]
- Jeffries T. W., Choi S., Kirk T. K. Nutritional Regulation of Lignin Degradation by Phanerochaete chrysosporium. Appl Environ Microbiol. 1981 Aug;42(2):290–296. doi: 10.1128/aem.42.2.290-296.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen K. A., Evans K. M., Kirk T. K., Hammel K. E. Biosynthetic Pathway for Veratryl Alcohol in the Ligninolytic Fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1994 Feb;60(2):709–714. doi: 10.1128/aem.60.2.709-714.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaal E. E., de Jong E., Field J. A. Stimulation of Ligninolytic Peroxidase Activity by Nitrogen Nutrients in the White Rot Fungus Bjerkandera sp. Strain BOS55. Appl Environ Microbiol. 1993 Dec;59(12):4031–4036. doi: 10.1128/aem.59.12.4031-4036.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura Y., Asada Y., Kuwahara M. Screening of basidiomycetes for lignin peroxidase genes using a DNA probe. Appl Microbiol Biotechnol. 1990 Jan;32(4):436–442. doi: 10.1007/BF00903779. [DOI] [PubMed] [Google Scholar]
- Kirk T. K., Farrell R. L. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
- Koduri R. S., Tien M. Kinetic analysis of lignin peroxidase: explanation for the mediation phenomenon by veratryl alcohol. Biochemistry. 1994 Apr 12;33(14):4225–4230. doi: 10.1021/bi00180a016. [DOI] [PubMed] [Google Scholar]
- Kuan I. C., Johnson K. A., Tien M. Kinetic analysis of manganese peroxidase. The reaction with manganese complexes. J Biol Chem. 1993 Sep 25;268(27):20064–20070. [PubMed] [Google Scholar]
- Li D., Alic M., Gold M. H. Nitrogen regulation of lignin peroxidase gene transcription. Appl Environ Microbiol. 1994 Sep;60(9):3447–3449. doi: 10.1128/aem.60.9.3447-3449.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michel F. C., Jr, Dass S. B., Grulke E. A., Reddy C. A. Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of kraft bleach plant effluent. Appl Environ Microbiol. 1991 Aug;57(8):2368–2375. doi: 10.1128/aem.57.8.2368-2375.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ollikka P., Alhonmäki K., Leppänen V. M., Glumoff T., Raijola T., Suominen I. Decolorization of Azo, Triphenyl Methane, Heterocyclic, and Polymeric Dyes by Lignin Peroxidase Isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Dec;59(12):4010–4016. doi: 10.1128/aem.59.12.4010-4016.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paszczynski A., Crawford R. L. Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: involvement of veratryl alcohol. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1056–1063. doi: 10.1016/0006-291x(91)90999-n. [DOI] [PubMed] [Google Scholar]
- Perez J., Jeffries T. W. Mineralization of C-Ring-Labeled Synthetic Lignin Correlates with the Production of Lignin Peroxidase, not of Manganese Peroxidase or Laccase. Appl Environ Microbiol. 1990 Jun;56(6):1806–1812. doi: 10.1128/aem.56.6.1806-1812.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez J., Jeffries T. W. Role of organic acid chelators in manganese regulation of lignin degradation by Phanerochaete chrysosporium. Appl Biochem Biotechnol. 1993 Spring;39-40:227–238. doi: 10.1007/BF02918992. [DOI] [PubMed] [Google Scholar]
- Perez J., Jeffries T. W. Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Aug;58(8):2402–2409. doi: 10.1128/aem.58.8.2402-2409.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reiser J., Walther I. S., Fraefel C., Fiechter A. Methods to investigate the expression of lignin peroxidase genes by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Sep;59(9):2897–2903. doi: 10.1128/aem.59.9.2897-2903.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tonon F., Odier E. Influence of Veratryl Alcohol and Hydrogen Peroxide on Ligninase Activity and Ligninase Production by Phanerochaete chrysosporium. Appl Environ Microbiol. 1988 Feb;54(2):466–472. doi: 10.1128/aem.54.2.466-472.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valli K., Wariishi H., Gold M. H. Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Biochemistry. 1990 Sep 18;29(37):8535–8539. doi: 10.1021/bi00489a005. [DOI] [PubMed] [Google Scholar]
- Van der Woude M. W., Boominathan K., Reddy C. A. Nitrogen regulation of lignin peroxidase and manganese-dependent peroxidase production is independent of carbon and manganese regulation in Phanerochaete chrysosporium. Arch Microbiol. 1993;160(1):1–4. doi: 10.1007/BF00258138. [DOI] [PubMed] [Google Scholar]
- Vares T., Niemenmaa O., Hatakka A. Secretion of Ligninolytic Enzymes and Mineralization of C-Ring-Labelled Synthetic Lignin by Three Phlebia tremellosa Strains. Appl Environ Microbiol. 1994 Feb;60(2):569–575. doi: 10.1128/aem.60.2.569-575.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Jong E., Cazemier A. E., Field J. A., de Bont J. A. Physiological Role of Chlorinated Aryl Alcohols Biosynthesized De Novo by the White Rot Fungus Bjerkandera sp. Strain BOS55. Appl Environ Microbiol. 1994 Jan;60(1):271–277. doi: 10.1128/aem.60.1.271-277.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Jong E., Field J. A., de Bont J. A. Evidence for a new extracellular peroxidase. Manganese-inhibited peroxidase from the white-rot fungus Bjerkandera sp. BOS 55. FEBS Lett. 1992 Mar 24;299(1):107–110. doi: 10.1016/0014-5793(92)80111-s. [DOI] [PubMed] [Google Scholar]