Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 May;61(5):1968–1975. doi: 10.1128/aem.61.5.1968-1975.1995

Melanin Production by a Filamentous Soil Fungus in Response to Copper and Localization of Copper Sulfide by Sulfide-Silver Staining

T Caesar-Tonthat, Kloeke F Van Ommen, G G Geesey, J M Henson
PMCID: PMC1388449  PMID: 16535031

Abstract

Gaeumannomyces graminis var. graminis, a filamentous soil ascomycete, exhibited enhanced cell wall melanin accumulation when exposed to as little as 0.01 mM CuSO(inf4) in minimal broth culture. Because its synthesis was inhibited by tricyclazole, the melanin produced in response to copper was dihydroxynaphthalene melanin. An additional hyphal cell wall layer was visualized by electron microscopy when hyphae were grown in the presence of copper and fixed by cryotechniques. This electron-dense layer was between the outer cell wall and the inner chitin layer and doubled the total wall thickness. In copper-grown cells that were also treated with tricyclazole, this electron-dense layer was absent. Atomic absorption spectroscopy demonstrated that up to 3.5 mg of Cu per g of fungal mycelium was adsorbed or taken up by hyphae grown in 0.06 mM CuSO(inf4). A method for silver enhancement was developed to determine the cellular location of CuS. CuS was present in cell walls and septa of copper-grown hyphae. Electron microscopy of silver-stained cells suggested that CuS was associated with the melanin layer of cell walls.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrenäs M. L., Axelsson A. The development of melanin in the stria vascularis of the gerbil. Acta Otolaryngol. 1992;112(1):50–58. doi: 10.3109/00016489209100782. [DOI] [PubMed] [Google Scholar]
  2. Cervantes C., Gutierrez-Corona F. Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev. 1994 Jun;14(2):121–137. doi: 10.1111/j.1574-6976.1994.tb00083.x. [DOI] [PubMed] [Google Scholar]
  3. Danscher G. Autometallography. A new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides). Histochemistry. 1984;81(4):331–335. doi: 10.1007/BF00514327. [DOI] [PubMed] [Google Scholar]
  4. Danscher G. Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy. Histochemistry. 1981;71(1):1–16. doi: 10.1007/BF00592566. [DOI] [PubMed] [Google Scholar]
  5. Danscher G. Histochemical tracing of zinc, mercury, silver and gold. Prog Histochem Cytochem. 1991;23(1-4):273–285. doi: 10.1016/s0079-6336(11)80196-8. [DOI] [PubMed] [Google Scholar]
  6. Ellis D. H., Griffiths D. A. Melanin deposition in the hyphae of a species of Phomopsis. Can J Microbiol. 1975 Apr;21(4):442–452. doi: 10.1139/m75-063. [DOI] [PubMed] [Google Scholar]
  7. Enochs W. S., Nilges M. J., Swartz H. M. Purified human neuromelanin, synthetic dopamine melanin as a potential model pigment, and the normal human substantia nigra: characterization by electron paramagnetic resonance spectroscopy. J Neurochem. 1993 Jul;61(1):68–79. doi: 10.1111/j.1471-4159.1993.tb03538.x. [DOI] [PubMed] [Google Scholar]
  8. Fourest E., Canal C., Roux J. C. Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev. 1994 Aug;14(4):325–332. doi: 10.1111/j.1574-6976.1994.tb00106.x. [DOI] [PubMed] [Google Scholar]
  9. Fujii Y., Shimizu K., Satoh M., Fujita M., Fujioka Y., Li Y., Togashi Y., Takeichi N., Nagashima K. Histochemical demonstration of copper in LEC rat liver. Histochemistry. 1993 Oct;100(4):249–256. doi: 10.1007/BF00270043. [DOI] [PubMed] [Google Scholar]
  10. Jacobson E. S., Jenkins N. D., Todd J. M. Relationship between superoxide dismutase and melanin in a pathogenic fungus. Infect Immun. 1994 Sep;62(9):4085–4086. doi: 10.1128/iai.62.9.4085-4086.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobson E. S., Tinnell S. B. Antioxidant function of fungal melanin. J Bacteriol. 1993 Nov;175(21):7102–7104. doi: 10.1128/jb.175.21.7102-7104.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KIKKAWA H., OGITA Z., FUJITO S. Nature of pigments derived from tyrosine and tryptophan in animals. Science. 1955 Jan 14;121(3133):43–47. doi: 10.1126/science.121.3133.43. [DOI] [PubMed] [Google Scholar]
  13. Lah J. J., Hayes D. M., Burry R. W. A neutral pH silver development method for the visualization of 1-nanometer gold particles in pre-embedding electron microscopic immunocytochemistry. J Histochem Cytochem. 1990 Apr;38(4):503–508. doi: 10.1177/38.4.2319121. [DOI] [PubMed] [Google Scholar]
  14. Lin C. M., Crawford B. F., Kosman D. J. Distribution of 64Cu in Saccharomyces cerevisiae: cellular locale and metabolism. J Gen Microbiol. 1993 Jul;139(7):1605–1615. doi: 10.1099/00221287-139-7-1605. [DOI] [PubMed] [Google Scholar]
  15. Lin C. M., Crawford B. F., Kosman D. J. Distribution of 64Cu in Saccharomyces cerevisiae: kinetic analyses of partitioning. J Gen Microbiol. 1993 Jul;139(7):1617–1626. doi: 10.1099/00221287-139-7-1617. [DOI] [PubMed] [Google Scholar]
  16. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rowley B. I., Pirt S. J. Melanin production by Aspergillus nidulans in batch and chemostat cultures. J Gen Microbiol. 1972 Oct;72(3):553–563. doi: 10.1099/00221287-72-3-553. [DOI] [PubMed] [Google Scholar]
  18. Sarna T., Hyde J. S., Swartz H. M. Ion-exchange in melanin: an electron spin resonance study with lanthanide probes. Science. 1976 Jun 11;192(4244):1132–1134. doi: 10.1126/science.179142. [DOI] [PubMed] [Google Scholar]
  19. Schraermeyer U., Stieve H. A newly discovered pathway of melanin formation in cultured retinal pigment epithelium of cattle. Cell Tissue Res. 1994 May;276(2):273–279. doi: 10.1007/BF00306113. [DOI] [PubMed] [Google Scholar]
  20. Stipanovic R. D., Bell A. A. Pentaketide metabolites of Verticillium dahliae. 3. Identification of (-)-3,4-dihydro-3,8-dihydroxy-1(2h)-naphtalenone((-)-vermelone) as a precursor to melanin. J Org Chem. 1976 Jul 9;41(14):2468–2469. doi: 10.1021/jo00876a026. [DOI] [PubMed] [Google Scholar]
  21. Thellier M., Ripoll C., Quintana C., Sommer F., Chevallier P., Dainty J. Physical methods to locate metal atoms in biological systems. Methods Enzymol. 1993;227:535–586. doi: 10.1016/0076-6879(93)27023-a. [DOI] [PubMed] [Google Scholar]
  22. Volesky B. Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev. 1994 Aug;14(4):291–302. doi: 10.1111/j.1574-6976.1994.tb00102.x. [DOI] [PubMed] [Google Scholar]
  23. Zecca L., Pietra R., Goj C., Mecacci C., Radice D., Sabbioni E. Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain. J Neurochem. 1994 Mar;62(3):1097–1101. doi: 10.1046/j.1471-4159.1994.62031097.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES