Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jun;61(6):2151–2158. doi: 10.1128/aem.61.6.2151-2158.1995

Altered Epiphytic Colonization of Mannityl Opine-Producing Transgenic Tobacco Plants by a Mannityl Opine-Catabolizing Strain of Pseudomonas syringae

M Wilson, M A Savka, I Hwang, S K Farrand, S E Lindow
PMCID: PMC1388458  PMID: 16535040

Abstract

The plasmid pYDH208, which confers the ability to catabolize the mannityl opines mannopine and agropine, was mobilized into the nonpathogenic Pseudomonas syringae strain Cit7. The growth of the mannityl opine-catabolizing strain Cit7(pYDH208) was compared with that of the near-isogenic non-opine-catabolizing strain Cit7xylE on leaves of wild-type tobacco (Nicotiana tabacum cv. Xanthi) and transgenic mannityl opine-producing tobacco plants (N. tabacum cv. Xanthi, line 2-26). The population size of Cit7(pYDH208) was significantly greater on the lower leaves of transgenic plants than on middle or upper leaves of those plants. The population size of Cit7(pYDH208) on lower leaves of transgenic plants was also significantly greater than the population size of Cit7xylE on similar leaves of wild-type plants. High-voltage paper electrophoresis demonstrated higher levels of mannityl opines in washings from lower- and mid-level leaves than in washings from upper-level leaves. The ability of Cit7(pYDH208) to catabolize mannityl opines in the carbon-limited phyllosphere increased the carrying capacity of the lower leaves of transgenic plants for Cit7(pYDH208). In coinoculations, the increase in the ratio of population sizes of Cit7(pYDH208) to Cit7xylE on transgenic plants was apparently due to a subtle difference in the growth rates of the two strains and to the difference in final population sizes. An ability to utilize additional carbon sources on the transgenic plants also enabled Cit7(pYDH208) to achieve a higher degree of coexistence with Cit7xylE on transgenic plants than on wild-type plants. This supports the hypothesis that the level of coexistence between epiphytic bacterial populations can be altered through nutritional resource partitioning.

Full Text

The Full Text of this article is available as a PDF (374.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell C. R., Cummings N. E., Canfield M. L., Moore L. W. Competition of Octopine-Catabolizing Pseudomonas spp. and Octopine-Type Agrobacterium tumefaciens for Octopine in Chemostats. Appl Environ Microbiol. 1990 Sep;56(9):2840–2846. doi: 10.1128/aem.56.9.2840-2846.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dessaux Y., Tempé J., Farrand S. K. Genetic analysis of mannityl opine catabolism in octopine-type Agrobacterium tumefaciens strain 15955. Mol Gen Genet. 1987 Jun;208(1-2):301–308. doi: 10.1007/BF00330457. [DOI] [PubMed] [Google Scholar]
  3. Hong S. B., Dessaux Y., Chilton W. S., Farrand S. K. Organization and regulation of the mannopine cyclase-associated opine catabolism genes in Agrobacterium tumefaciens 15955. J Bacteriol. 1993 Jan;175(2):401–410. doi: 10.1128/jb.175.2.401-410.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Langridge W. H., Fitzgerald K. J., Koncz C., Schell J., Szalay A. A. Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. Proc Natl Acad Sci U S A. 1989 May;86(9):3219–3223. doi: 10.1073/pnas.86.9.3219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lindow S. E. Competitive Exclusion of Epiphytic Bacteria by IcePseudomonas syringae Mutants. Appl Environ Microbiol. 1987 Oct;53(10):2520–2527. doi: 10.1128/aem.53.10.2520-2527.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Morgan J. V., Tukey H. B. Characterization of Leachate from Plant Foliage. Plant Physiol. 1964 Jul;39(4):590–593. doi: 10.1104/pp.39.4.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Murphy P. J., Heycke N., Banfalvi Z., Tate M. E., de Bruijn F., Kondorosi A., Tempé J., Schell J. Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked and on the Sym plasmid. Proc Natl Acad Sci U S A. 1987 Jan;84(2):493–497. doi: 10.1073/pnas.84.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Murphy P. J., Heycke N., Trenz S. P., Ratet P., de Bruijn F. J., Schell J. Synthesis of an opine-like compound, a rhizopine, in alfalfa nodules is symbiotically regulated. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9133–9137. doi: 10.1073/pnas.85.23.9133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nautiyal C. S., Dion P. Characterization of the Opine-Utilizing Microflora Associated with Samples of Soil and Plants. Appl Environ Microbiol. 1990 Aug;56(8):2576–2579. doi: 10.1128/aem.56.8.2576-2579.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nautiyal C. S., Dion P., Chilton W. S. Mannopine and mannopinic acid as substrates for Arthrobacter sp. strain MBA209 and Pseudomonas putida NA513. J Bacteriol. 1991 May;173(9):2833–2841. doi: 10.1128/jb.173.9.2833-2841.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Saint C. P., Wexler M., Murphy P. J., Tempé J., Tate M. E., Murphy P. J. Characterization of genes for synthesis and catabolism of a new rhizopine induced in nodules by Rhizobium meliloti Rm220-3: extension of the rhizopine concept. J Bacteriol. 1993 Aug;175(16):5205–5215. doi: 10.1128/jb.175.16.5205-5215.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Savka M. A., Farrand S. K. Mannityl opine accumulation and exudation by transgenic tobacco. Plant Physiol. 1992 Feb;98(2):784–789. doi: 10.1104/pp.98.2.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Soedarjo M., Hemscheidt T. K., Borthakur D. Mimosine, a Toxin Present in Leguminous Trees (Leucaena spp.), Induces a Mimosine-Degrading Enzyme Activity in Some Rhizobium Strains. Appl Environ Microbiol. 1994 Dec;60(12):4268–4272. doi: 10.1128/aem.60.12.4268-4272.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tepfer D., Goldmann A., Pamboukdjian N., Maille M., Lepingle A., Chevalier D., Dénarié J., Rosenberg C. A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium. J Bacteriol. 1988 Mar;170(3):1153–1161. doi: 10.1128/jb.170.3.1153-1161.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tremblay G., Gagliardo R., Chilton W. S., Dion P. Diversity among Opine-Utilizing Bacteria: Identification of Coryneform Isolates. Appl Environ Microbiol. 1987 Jul;53(7):1519–1524. doi: 10.1128/aem.53.7.1519-1524.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wilson M., Lindow S. E. Coexistence among Epiphytic Bacterial Populations Mediated through Nutritional Resource Partitioning. Appl Environ Microbiol. 1994 Dec;60(12):4468–4477. doi: 10.1128/aem.60.12.4468-4477.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wilson M., Lindow S. E. Ecological Similarity and Coexistence of Epiphytic Ice-Nucleating (Ice) Pseudomonas syringae Strains and a Non-Ice-Nucleating (Ice) Biological Control Agent. Appl Environ Microbiol. 1994 Sep;60(9):3128–3137. doi: 10.1128/aem.60.9.3128-3137.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wilson M., Lindow S. E. Enhanced Epiphytic Coexistence of Near-Isogenic Salicylate-Catabolizing and Non-Salicylate-Catabolizing Pseudomonas putida Strains after Exogenous Salicylate Application. Appl Environ Microbiol. 1995 Mar;61(3):1073–1076. doi: 10.1128/aem.61.3.1073-1076.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES