Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jun;61(6):2166–2171. doi: 10.1128/aem.61.6.2166-2171.1995

Evidence for para Dechlorination of Polychlorobiphenyls by Methanogenic Bacteria

D Ye, JF I Quensen, J M Tiedje, S A Boyd
PMCID: PMC1388460  PMID: 16535042

Abstract

When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia.

Full Text

The Full Text of this article is available as a PDF (273.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E., Wolfe R. S. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J Bacteriol. 1979 Jan;137(1):256–263. doi: 10.1128/jb.137.1.256-263.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry D. F., Francis A. J., Bollag J. M. Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev. 1987 Mar;51(1):43–59. doi: 10.1128/mr.51.1.43-59.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown J. F., Jr, Bedard D. L., Brennan M. J., Carnahan J. C., Feng H., Wagner R. E. Polychlorinated biphenyl dechlorination in aquatic sediments. Science. 1987 May 8;236(4802):709–712. doi: 10.1126/science.236.4802.709. [DOI] [PubMed] [Google Scholar]
  4. Evans W. C., Fuchs G. Anaerobic degradation of aromatic compounds. Annu Rev Microbiol. 1988;42:289–317. doi: 10.1146/annurev.mi.42.100188.001445. [DOI] [PubMed] [Google Scholar]
  5. Fathepure B. Z., Boyd S. A. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Appl Environ Microbiol. 1988 Dec;54(12):2976–2980. doi: 10.1128/aem.54.12.2976-2980.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freedman D. L., Gossett J. M. Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl Environ Microbiol. 1991 Oct;57(10):2847–2857. doi: 10.1128/aem.57.10.2847-2857.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Genthner B. R., Price W. A., Pritchard P. H. Anaerobic Degradation of Chloroaromatic Compounds in Aquatic Sediments under a Variety of Enrichment Conditions. Appl Environ Microbiol. 1989 Jun;55(6):1466–1471. doi: 10.1128/aem.55.6.1466-1471.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holliger C., Schraa G., Stupperich E., Stams A. J., Zehnder A. J. Evidence for the involvement of corrinoids and factor F430 in the reductive dechlorination of 1,2-dichloroethane by Methanosarcina barkeri. J Bacteriol. 1992 Jul;174(13):4427–4434. doi: 10.1128/jb.174.13.4427-4434.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. May H. D., Boyle A. W., Price W. A., 2nd, Blake C. K. Subculturing of a polychlorinated biphenyl-dechlorinating anaerobic enrichment on solid media. Appl Environ Microbiol. 1992 Dec;58(12):4051–4054. doi: 10.1128/aem.58.12.4051-4054.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mikesell M. D., Boyd S. A. Dechlorination of chloroform by methanosarcina strains. Appl Environ Microbiol. 1990 Apr;56(4):1198–1201. doi: 10.1128/aem.56.4.1198-1201.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morris P. J., Mohn W. W., Quensen J. F., 3rd, Tiedje J. M., Boyd S. A. Establishment of polychlorinated biphenyl-degrading enrichment culture with predominantly meta dechlorination. Appl Environ Microbiol. 1992 Sep;58(9):3088–3094. doi: 10.1128/aem.58.9.3088-3094.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nies L., Vogel T. M. Effects of organic substrates on dechlorination of aroclor 1242 in anaerobic sediments. Appl Environ Microbiol. 1990 Sep;56(9):2612–2617. doi: 10.1128/aem.56.9.2612-2617.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Quensen John F., Boyd Stephen A., Tiedje James M. Dechlorination of Four Commercial Polychlorinated Biphenyl Mixtures (Aroclors) by Anaerobic Microorganisms from Sediments. Appl Environ Microbiol. 1990 Aug;56(8):2360–2369. doi: 10.1128/aem.56.8.2360-2369.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ye D., Quensen J. F., 3rd, Tiedje J. M., Boyd S. A. Anaerobic dechlorination of polychlorobiphenyls (Aroclor 1242) by pasteurized and ethanol-treated microorganisms from sediments. Appl Environ Microbiol. 1992 Apr;58(4):1110–1114. doi: 10.1128/aem.58.4.1110-1114.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zehnder A. J., Wuhrmann K. Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science. 1976 Dec 10;194(4270):1165–1166. doi: 10.1126/science.793008. [DOI] [PubMed] [Google Scholar]
  16. Zinder S. H., Mah R. A. Isolation and Characterization of a Thermophilic Strain of Methanosarcina Unable to Use H(2)-CO(2) for Methanogenesis. Appl Environ Microbiol. 1979 Nov;38(5):996–1008. doi: 10.1128/aem.38.5.996-1008.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES