Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jun;61(6):2351–2357. doi: 10.1128/aem.61.6.2351-2357.1995

Compatible Solutes in the Thermophilic Bacteria Rhodothermus marinus and "Thermus thermophilus"

O C Nunes, C M Manaia, M S Da Costa, H Santos
PMCID: PMC1388471  PMID: 16535053

Abstract

(sup13)C nuclear magnetic resonance spectroscopy and (sup1)H nuclear magnetic resonance spectroscopy were used to identify and quantify the organic solutes of several strains of halophilic or halotolerant thermophilic bacteria. Two strains of Rhodothermus marinus and four strains of "Thermus thermophilus" grown in complex medium containing NaCl were examined. 2-O-Mannosylglycerate was a major compatible solute in all strains: the Thermus strains accumulated the (beta)-anomer only, whereas both anomers were found in R. marinus. 2-O-(beta)-mannosylglycerate and 2-O-(alpha)-mannosylglycerate were the major compatible solutes in R. marinus. The former was the predominant solute in cells grown in 2.0 and 4.0% NaCl-containing medium, while the latter was the predominant compatible solute at higher salinities. Glutamate, trehalose, and glucose were also present as minor components. The intracellular K(sup+) concentration, as determined by (sup39)K nuclear magnetic resonance spectroscopy, in R. marinus increased with salinity and was sufficient to balance the negative charges of the mannosylglycerate. In addition to 2-O-(beta)-mannosylglycerate, trehalose was a major compatible solute of "T. thermophilus." 2-O-(beta)-Mannosylglycerate was the main solute in medium containing 1.0 or 2.0% NaCl, while trehalose predominated in cells grown in medium supplemented with 3.0 or 4.0% NaCl. Glycine betaine, in lower concentrations, was also detected in two "T. thermophilus" strains. This is the first report of mannosylglycerate as a compatible solute in bacteria.

Full Text

The Full Text of this article is available as a PDF (357.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botsford J. L., Lewis T. A. Osmoregulation in Rhizobium meliloti: Production of Glutamic Acid in Response to Osmotic Stress. Appl Environ Microbiol. 1990 Feb;56(2):488–494. doi: 10.1128/aem.56.2.488-494.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Brown A. D. Microbial water stress. Bacteriol Rev. 1976 Dec;40(4):803–846. doi: 10.1128/br.40.4.803-846.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ciulla R. A., Burggraf S., Stetter K. O., Roberts M. F. Occurrence and Role of Di-myo-Inositol-1,1'-Phosphate in Methanococcus igneus. Appl Environ Microbiol. 1994 Oct;60(10):3660–3664. doi: 10.1128/aem.60.10.3660-3664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ciulla R., Clougherty C., Belay N., Krishnan S., Zhou C., Byrd D., Roberts M. F. Halotolerance of Methanobacterium thermoautotrophicum delta H and Marburg. J Bacteriol. 1994 Jun;176(11):3177–3187. doi: 10.1128/jb.176.11.3177-3187.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  7. Grothe S., Krogsrud R. L., McClellan D. J., Milner J. L., Wood J. M. Proline transport and osmotic stress response in Escherichia coli K-12. J Bacteriol. 1986 Apr;166(1):253–259. doi: 10.1128/jb.166.1.253-259.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karsten U., Barrow K. D., King R. J. Floridoside, L-Isofloridoside, and D-Isofloridoside in the Red Alga Porphyra columbina (Seasonal and Osmotic Effects). Plant Physiol. 1993 Oct;103(2):485–491. doi: 10.1104/pp.103.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. McLaggan D., Logan T. M., Lynn D. G., Epstein W. Involvement of gamma-glutamyl peptides in osmoadaptation of Escherichia coli. J Bacteriol. 1990 Jul;172(7):3631–3636. doi: 10.1128/jb.172.7.3631-3636.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rengpipat S., Lowe S. E., Zeikus J. G. Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J Bacteriol. 1988 Jul;170(7):3065–3071. doi: 10.1128/jb.170.7.3065-3071.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Robertson D. E., Noll D., Roberts M. F. Free amino acid dynamics in marine methanogens. beta-Amino acids as compatible solutes. J Biol Chem. 1992 Jul 25;267(21):14893–14901. [PubMed] [Google Scholar]
  13. Robertson D. E., Noll D., Roberts M. F., Menaia J. A., Boone D. R. Detection of the osmoregulator betaine in methanogens. Appl Environ Microbiol. 1990 Feb;56(2):563–565. doi: 10.1128/aem.56.2.563-565.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Santos H., Fareleira P., Pedregal C., LeGall J., Xavier A. V. In vivo 31P-NMR studies of Desulfovibrio species. Detection of a novel phosphorus-containing compound. Eur J Biochem. 1991 Oct 1;201(1):283–287. doi: 10.1111/j.1432-1033.1991.tb16285.x. [DOI] [PubMed] [Google Scholar]
  15. Scholz S., Sonnenbichler J., Schäfer W., Hensel R. Di-myo-inositol-1,1'-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett. 1992 Jul 20;306(2-3):239–242. doi: 10.1016/0014-5793(92)81008-a. [DOI] [PubMed] [Google Scholar]
  16. Sowers K. R., Robertson D. E., Noll D., Gunsalus R. P., Roberts M. F. N epsilon-acetyl-beta-lysine: an osmolyte synthesized by methanogenic archaebacteria. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9083–9087. doi: 10.1073/pnas.87.23.9083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Turner D. L., Santos H., Fareleira P., Pacheco I., LeGall J., Xavier A. V. Structure determination of a novel cyclic phosphocompound isolated from Desulfovibrio desulfuricans. Biochem J. 1992 Jul 15;285(Pt 2):387–390. doi: 10.1042/bj2850387. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES