Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jun;61(6):2378–2383. doi: 10.1128/aem.61.6.2378-2383.1995

Host-Controlled Restriction of Nodulation by Bradyrhizobium japonicum Strains in Serogroup 110

S M Lohrke, J H Orf, E Martinez-Romero, M J Sadowsky
PMCID: PMC1388472  PMID: 16535054

Abstract

We previously reported the identification of a soybean plant introduction (PI) genotype, PI 417566, which restricts nodulation by Bradyrhizobium japonicum MN1-1c (USDA 430), strains in serogroup 129, and USDA 110 (P. B. Cregan, H. H. Keyser, and M. J. Sadowsky, Appl. Environ. Microbiol. 55:2532-2536, 1989, and Crop Sci. 29:307-312, 1989). In this study, we further characterized nodulation restriction by PI 417566. Twenty-four serogroup 110 isolates were tested for restricted nodulation on PI 417566. Of the 24 strains examined, 62.5% were restricted in nodulation by the PI genotype. The remainder of the serogroup 110 strains tested (37.5%), however, formed significant numbers of nodules on PI 417566, suggesting that host-controlled restriction of nodulation by members of serogroup 110 is strain dependent. Analysis of allelic variation at seven enzyme-encoding loci by multilocus enzyme electrophoresis indicated that the serogroup 110 isolates can be divided into two major groups. The majority of serogroup 110 isolates which nodulated PI 417566 belonged to the same multilocus enzyme electrophoresis group. B. japonicum USDA 110 and USDA 123 were used as coinoculants in competition-for-nodulation studies using PI 417566. Over 98% of the nodules formed on PI 417566 contained USDA 123, whereas less than 2% contained USDA 110. We also report the isolation of a Tn5 mutant of USDA 110 which has overcome nodulation restriction conditioned by PI 417566. This mutant, D4.2-5, contained a single Tn5 insertion and nodulated PI 417566 to an extent equal to that seen with the unrestricted strain USDA 123. The host range of D4.2-5 on soybean plants and other legumes was unchanged relative to that of USDA 110, except that the mutant nodulated Glycine max cv. Hill more efficiently. While strain USDA 110 has the ability to block nodulation by D4.2-5 on PI 417566, the nodulation-blocking phenomenon was not seen unless strain USDA 110 was inoculated at a 100-fold greater concentration than the mutant strain.

Full Text

The Full Text of this article is available as a PDF (292.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balatti P. A., Pueppke S. G. Nodulation of Soybean by a Transposon-Mutant of Rhizobium fredii USDA257 Is Subject to Competitive Nodulation Blocking by Other Rhizobia. Plant Physiol. 1990 Nov;94(3):1276–1281. doi: 10.1104/pp.94.3.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhagwat S. S., Gude C., Cohen D. S., Dotson R., Mathis J., Lee W., Furness P. Thromboxane receptor antagonism combined with thromboxane synthase inhibition. 5. Synthesis and evaluation of enantiomers of 8-[[(4-chlorophenyl)sulfonyl]amino]-4-(3-pyridinylalkyl)octanoic acid. J Med Chem. 1993 Jan 22;36(2):205–210. doi: 10.1021/jm00054a003. [DOI] [PubMed] [Google Scholar]
  3. Broughton W. J., van Egeraat A. W., Lie T. A. Dynamics of Rhizobium competition for nodulation of Pisum sativum cv. Afghanistan. Can J Microbiol. 1980 Apr;26(4):562–565. doi: 10.1139/m80-099. [DOI] [PubMed] [Google Scholar]
  4. Cregan P. B., Keyser H. H., Sadowsky M. J. Host Plant Effects on Nodulation and Competitiveness of the Bradyrhizobium japonicum Serotype Strains Constituting Serocluster 123. Appl Environ Microbiol. 1989 Oct;55(10):2532–2536. doi: 10.1128/aem.55.10.2532-2536.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dowling D. N., Samrey U., Stanley J., Broughton W. J. Cloning of Rhizobium leguminosarum genes for competitive nodulation blocking on peas. J Bacteriol. 1987 Mar;169(3):1345–1348. doi: 10.1128/jb.169.3.1345-1348.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kim C. H., Kuykendall L. D., Shah K. S., Keister D. L. Induction of Symbiotically Defective Auxotrophic Mutants of Rhizobium fredii HH303 by Transposon Mutagenesis. Appl Environ Microbiol. 1988 Feb;54(2):423–427. doi: 10.1128/aem.54.2.423-427.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pierce M., Bauer W. D. A rapid regulatory response governing nodulation in soybean. Plant Physiol. 1983 Oct;73(2):286–290. doi: 10.1104/pp.73.2.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pinero D., Martinez E., Selander R. K. Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol. 1988 Nov;54(11):2825–2832. doi: 10.1128/aem.54.11.2825-2832.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Robert F. M., Schmidt E. L. Population Changes and Persistence of Rhizobium phaseoli in Soil and Rhizospheres. Appl Environ Microbiol. 1983 Feb;45(2):550–556. doi: 10.1128/aem.45.2.550-556.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sadowsky M. J., Cregan P. B., Gottfert M., Sharma A., Gerhold D., Rodriguez-Quinones F., Keyser H. H., Hennecke H., Stacey G. The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):637–641. doi: 10.1073/pnas.88.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sadowsky M. J., Cregan P. B. The Soybean Rj4 Allele Restricts Nodulation by Bradyrhizobium japonicum Serogroup 123 Strains. Appl Environ Microbiol. 1992 Feb;58(2):720–723. doi: 10.1128/aem.58.2.720-723.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sadowsky M. J., Kosslak R. M., Madrzak C. J., Golinska B., Cregan P. B. Restriction of Nodulation by Bradyrhizobium japonicum Is Mediated by Factors Present in the Roots of Glycine max. Appl Environ Microbiol. 1995 Feb;61(2):832–836. doi: 10.1128/aem.61.2.832-836.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sadowsky M. J., Tully R. E., Cregan P. B., Keyser H. H. Genetic Diversity in Bradyrhizobium japonicum Serogroup 123 and Its Relation to Genotype-Specific Nodulation of Soybean. Appl Environ Microbiol. 1987 Nov;53(11):2624–2630. doi: 10.1128/aem.53.11.2624-2630.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schmidt E. L., Bakole R. O., Bohlool B. B. Fluorescent-antibody approach to study of rhizobia in soil. J Bacteriol. 1968 Jun;95(6):1987–1992. doi: 10.1128/jb.95.6.1987-1992.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol. 1986 May;51(5):873–884. doi: 10.1128/aem.51.5.873-884.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. van Berkum P., Kotob S. I., Basit H. A., Salem S., Gewaily E. M., Angle J. S. Genotypic Diversity among Strains of Bradyrhizobium japonicum Belonging to Serogroup 110. Appl Environ Microbiol. 1993 Sep;59(9):3130–3133. doi: 10.1128/aem.59.9.3130-3133.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES