Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jun;61(6):2439–2441. doi: 10.1128/aem.61.6.2439-2441.1995

Oligotrophic Bacteria Enhance Algal Growth under Iron-Deficient Conditions

E Keshtacher-Liebso, Y Hadar, Y Chen
PMCID: PMC1388476  PMID: 16535058

Abstract

A Halomonas sp., a marine halophilic and oligotrophic bacterium, was grown on exudates of Dunaliella bardawil. The bacteria increased the solubility of Fe, thereby enhancing its availability to the algae. As a result, the algal growth rate increased. Because of these syntrophic relations, growth of the marine alga D. bardawil was facilitated at Fe levels that would otherwise induce Fe deficiency and inhibit algal growth.

Full Text

The Full Text of this article is available as a PDF (211.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allnutt F. C., Bonner W. D. Characterization of Iron Uptake from Ferrioxamine B by Chlorella vulgaris. Plant Physiol. 1987 Nov;85(3):746–750. doi: 10.1104/pp.85.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allnutt F. C., Bonner W. D. Evaluation of Reductive Release as a Mechanism for Iron Uptake from Ferrioxamine B by Chlorella vulgaris. Plant Physiol. 1987 Nov;85(3):751–756. doi: 10.1104/pp.85.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bar-Ness E., Hadar Y., Chen Y., Römheld V., Marschner H. Short-term effects of rhizosphere microorganisms on fe uptake from microbial siderophores by maize and oat. Plant Physiol. 1992 Sep;100(1):451–456. doi: 10.1104/pp.100.1.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Murphy T. P., Lean D. R., Nalewajko C. Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae. Science. 1976 May 28;192(4242):900–902. doi: 10.1126/science.818707. [DOI] [PubMed] [Google Scholar]
  5. Neilands J. B. Molecular aspects of regulation of high affinity iron absorption in microorganisms. Adv Inorg Biochem. 1990;8:63–90. [PubMed] [Google Scholar]
  6. Reid R. T., Live D. H., Faulkner D. J., Butler A. A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature. 1993 Dec 2;366(6454):455–458. doi: 10.1038/366455a0. [DOI] [PubMed] [Google Scholar]
  7. Schwyn B., Neilands J. B. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987 Jan;160(1):47–56. doi: 10.1016/0003-2697(87)90612-9. [DOI] [PubMed] [Google Scholar]
  8. Sijmons P. C., van den Briel W., Bienfait H. F. Cytosolic NADPH is the electron donor for extracellular fe reduction in iron-deficient bean roots. Plant Physiol. 1984 May;75(1):219–221. doi: 10.1104/pp.75.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sundh I. Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl Environ Microbiol. 1992 Sep;58(9):2938–2947. doi: 10.1128/aem.58.9.2938-2947.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tranvik L. J. Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl Environ Microbiol. 1990 Jun;56(6):1672–1677. doi: 10.1128/aem.56.6.1672-1677.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Trick C. G., Andersen R. J., Gillam A., Harrison P. J. Prorocentrin: An Extracellular Siderophore Produced by the Marine Dinoflagellate Prorocentrum minimum. Science. 1983 Jan 21;219(4582):306–308. doi: 10.1126/science.219.4582.306. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES