Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jul;61(7):2589–2595. doi: 10.1128/aem.61.7.2589-2595.1995

Penicillium chrysogenum Takes up the Penicillin G Precursor Phenylacetic Acid by Passive Diffusion

D J Hillenga, H Versantvoort, S van der Molen, A Driessen, W N Konings
PMCID: PMC1388490  PMID: 16535072

Abstract

Penicillium chrysogenum utilizes phenylacetic acid as a side chain precursor in penicillin G biosynthesis. During industrial production of penicillin G, phenylacetic acid is fed in small amounts to the medium to avoid toxic side effects. Phenylacetic acid is taken up from the medium and intracellularly coupled to 6-aminopenicillanic acid. To enter the fungal cell, phenylacetic acid has to pass the plasma membrane. The process via which phenylacetic acid crosses the plasma membrane was studied in mycelia and liposomes. Uptake of phenylacetic acid by mycelium was nonsaturable, and the initial velocity increased logarithmically with decreasing external pH. Studies with liposomes demonstrated a rapid passive flux of the protonated species through liposomal membranes. These results indicate that phenylacetic acid passes the plasma membrane via passive diffusion of the protonated species. The rate of phenylacetic acid uptake at an external concentration of 3 mM is at least 200-fold higher than the penicillin production rate in the Panlabs P2 strain. In this strain, uptake of phenylacetic acid is not the rate-limiting step in penicillin G biosynthesis.

Full Text

The Full Text of this article is available as a PDF (277.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNSTEIN H. R., GRANT P. T. The metabolism of the Penicillia in relation to penicillin biosynthesis. Bacteriol Rev. 1956 Sep;20(3):133–147. doi: 10.1128/br.20.3.133-147.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cássio F., Leão C., van Uden N. Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 1987 Mar;53(3):509–513. doi: 10.1128/aem.53.3.509-513.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DEMAIN A. L. The mechanism of penicillin biosynthesis. Adv Appl Microbiol. 1959;1:23–47. doi: 10.1016/s0065-2164(08)70473-8. [DOI] [PubMed] [Google Scholar]
  4. Deuticke B. Monocarboxylate transport in red blood cells: kinetics and chemical modification. Methods Enzymol. 1989;173:300–329. doi: 10.1016/s0076-6879(89)73020-2. [DOI] [PubMed] [Google Scholar]
  5. Driessen A. J., de Vrij W., Konings W. N. Incorporation of beef heart cytochrome c oxidase as a proton-motive force-generating mechanism in bacterial membrane vesicles. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7555–7559. doi: 10.1073/pnas.82.22.7555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eriksen S. H., Jensen B., Schneider I., Kaasgaard S., Olsen J. Utilization of side-chain precursors for penicillin biosynthesis in a high-producing strain of Penicillium chrysogenum. Appl Microbiol Biotechnol. 1994 Feb;40(6):883–887. doi: 10.1007/BF00173993. [DOI] [PubMed] [Google Scholar]
  7. Fernández-Cañn J. M., Reglero A., Martínez-Blanco H., Ferrero M. A., Luengo J. M. Phenylacetic acid transport system in Penicillium chrysogenum Wis 54-1255: molecular specificity of its induction. J Antibiot (Tokyo) 1989 Sep;42(9):1410–1415. doi: 10.7164/antibiotics.42.1410. [DOI] [PubMed] [Google Scholar]
  8. Fernández-Cañn J. M., Reglero A., Martínez-Blanco H., Luengo J. M. Uptake of phenylacetic acid by Penicillium chrysogenum Wis 54-1255: a critical regulatory point in benzylpenicillin biosynthesis. J Antibiot (Tokyo) 1989 Sep;42(9):1398–1409. doi: 10.7164/antibiotics.42.1398. [DOI] [PubMed] [Google Scholar]
  9. Gibbon B. C., Kropf D. L. Cytosolic pH Gradients Associated with Tip Growth. Science. 1994 Mar 11;263(5152):1419–1421. doi: 10.1126/science.263.5152.1419. [DOI] [PubMed] [Google Scholar]
  10. Hillenga D. J., Versantvoort H. J., Driessen A. J., Konings W. N. Structural and functional properties of plasma membranes from the filamentous fungus Penicillium chrysogenum. Eur J Biochem. 1994 Sep 1;224(2):581–587. doi: 10.1111/j.1432-1033.1994.t01-1-00581.x. [DOI] [PubMed] [Google Scholar]
  11. Horák J. Amino acid transport in eucaryotic microorganisms. Biochim Biophys Acta. 1986 Dec 22;864(3-4):223–256. doi: 10.1016/0304-4157(86)90001-8. [DOI] [PubMed] [Google Scholar]
  12. Hunter D. R., Segel I. H. Effect of weak acids on amino acid transport by Penicillium chrysogenum: evidence for a proton or charge gradient as the driving force. J Bacteriol. 1973 Mar;113(3):1184–1192. doi: 10.1128/jb.113.3.1184-1192.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lara F., del Carmen Mateos R., Vázquez G., Sánchez S. Induction of penicillin biosynthesis by L-glutamate in penicillium chrysogenum. Biochem Biophys Res Commun. 1982 Mar 15;105(1):172–178. doi: 10.1016/s0006-291x(82)80027-2. [DOI] [PubMed] [Google Scholar]
  15. Martín J. F., Liras P. Enzymes involved in penicillin, cephalosporin and cephamycin biosynthesis. Adv Biochem Eng Biotechnol. 1989;39:153–187. doi: 10.1007/BFb0051954. [DOI] [PubMed] [Google Scholar]
  16. Martínez-Blanco H., Reglero A., Fernández-Valverde M., Ferrero M. A., Moreno M. A., Peñalva M. A., Luengo J. M. Isolation and characterization of the acetyl-CoA synthetase from Penicillium chrysogenum. Involvement of this enzyme in the biosynthesis of penicillins. J Biol Chem. 1992 Mar 15;267(8):5474–5481. [PubMed] [Google Scholar]
  17. Martínez-Blanco H., Reglero A., Ferrero M. A., Fernández-Cañn J. M., Luengo J. M. Repression of phenylacetic acid transport system in Penicillium chrysogenum Wis 54-1255 by free amino acids and ammonium salts. J Antibiot (Tokyo) 1989 Sep;42(9):1416–1423. doi: 10.7164/antibiotics.42.1416. [DOI] [PubMed] [Google Scholar]
  18. Müller W. H., Bovenberg R. A., Groothuis M. H., Kattevilder F., Smaal E. B., Van der Voort L. H., Verkleij A. J. Involvement of microbodies in penicillin biosynthesis. Biochim Biophys Acta. 1992 Apr 22;1116(2):210–213. doi: 10.1016/0304-4165(92)90118-e. [DOI] [PubMed] [Google Scholar]
  19. Müller W. H., van der Krift T. P., Krouwer A. J., Wösten H. A., van der Voort L. H., Smaal E. B., Verkleij A. J. Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J. 1991 Feb;10(2):489–495. doi: 10.1002/j.1460-2075.1991.tb07971.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nüesch J., Heim J., Treichler H. J. The biosynthesis of sulfur-containing beta-lactam antibiotics. Annu Rev Microbiol. 1987;41:51–75. doi: 10.1146/annurev.mi.41.100187.000411. [DOI] [PubMed] [Google Scholar]
  21. Sanders D., Slayman C. L. Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganism Neurospora. J Gen Physiol. 1982 Sep;80(3):377–402. doi: 10.1085/jgp.80.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Terada H., Sakabe Y. Studies on residual antibacterials in foods. IV. Simultaneous determination of penicillin G, penicillin V and ampicillin in milk by high-performance liquid chromatography. J Chromatogr. 1985 Dec 4;348(2):379–387. doi: 10.1016/s0021-9673(01)92476-8. [DOI] [PubMed] [Google Scholar]
  23. Walter A., Gutknecht J. Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol. 1986;90(3):207–217. doi: 10.1007/BF01870127. [DOI] [PubMed] [Google Scholar]
  24. Yu C., Yu L., King T. E. Studies on cytochrome oxidase. Interactions of the cytochrome oxidase protein with phospholipids and cytochrome c. J Biol Chem. 1975 Feb 25;250(4):1383–1392. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES