Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Jul;61(7):2720–2726. doi: 10.1128/aem.61.7.2720-2726.1995

Microbial Formation of Dimethyl Sulfide in Anoxic Sphagnum Peat

R P Kiene, M E Hines
PMCID: PMC1388498  PMID: 16535080

Abstract

Peat bogs dominated by Sphagnum spp. have relatively high areal rates of dimethyl sulfide (DMS) emission to the atmosphere. DMS was produced in anoxic slurries of Sphagnum peat with a linear time course and with an average rate of 40.4 (range, 22.0 to 68.6) nmol per liter of slurry (middot) day(sup-1) observed in nine batches of slurry. Methanethiol (MeSH) was produced at roughly similar rates over the typical 4- to 8-day incubations. DMS and MeSH production in these acidic (pH 4.2 to 4.6) peats were biological, as they were stopped completely by autoclaving and inhibited strongly by addition of antibiotics and 500 (mu)M chloroform. Endogenous DMS production may be due to the degradation of S-methyl-methionine, dimethyl sulfoxide, or methoxyaromatic compounds (e.g., syringic acid), each of which stimulated DMS formation when added at 5 to 10 (mu)M concentrations. However, on the basis of the high rates of thiol (MeSH and ethanethiol) methylation activity that we observed and the availability of endogenous MeSH, we suggest that methylation of MeSH is the major pathway leading to DMS formation in anaerobic peat. Solid-phase adsorption of MeSH plays a key role in its availability for biomethylation reactions. Additions of acetate (1.5 mM) or compounds which could cause acetate to accumulate (e.g., glucose, alanine, and 2-bromoethanesulfonate) suppressed DMS formation. It is likely that acetogenic bacteria are involved in DMS formation, but our data are insufficient to allow firm conclusions about the metabolic pathways or organisms involved. Our observations are the first which point to the methylation of MeSH as the major mechanism for endogenous DMS production in any environment. The rates of net DMS production observed are sufficient to explain the relatively high fluxes of DMS emitted to the atmosphere from Sphagnum sp.-dominated wetlands.

Full Text

The Full Text of this article is available as a PDF (255.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Drotar A., Burton G. A., Jr, Tavernier J. E., Fall R. Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases. Appl Environ Microbiol. 1987 Jul;53(7):1626–1631. doi: 10.1128/aem.53.7.1626-1631.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kiene R. P., Visscher P. T. Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol. 1987 Oct;53(10):2426–2434. doi: 10.1128/aem.53.10.2426-2434.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Mazelis M., Levin B., Mallinson N. Decomposition of methyl methionine sulfonium salts by a bacterial enzyme. Biochim Biophys Acta. 1965 Jul 29;105(1):106–114. doi: 10.1016/s0926-6593(65)80179-5. [DOI] [PubMed] [Google Scholar]
  4. Nriagu J. O., Holdway D. A., Coker R. D. Biogenic sulfur and the acidity of rainfall in remote areas of Canada. Science. 1987 Sep 4;237(4819):1189–1192. doi: 10.1126/science.237.4819.1189. [DOI] [PubMed] [Google Scholar]
  5. Segal W., Starkey R. L. Microbial decomposition of methionine and identity of the resulting sulfur products. J Bacteriol. 1969 Jun;98(3):908–913. doi: 10.1128/jb.98.3.908-913.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Svensson B. H. Different temperature optima for methane formation when enrichments from Acid peat are supplemented with acetate or hydrogen. Appl Environ Microbiol. 1984 Aug;48(2):389–394. doi: 10.1128/aem.48.2.389-394.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Zinder S. H., Brock T. D. Dimethyl sulfoxide as an electron acceptor for anaerobic growth. Arch Microbiol. 1978 Jan 23;116(1):35–40. doi: 10.1007/BF00408731. [DOI] [PubMed] [Google Scholar]
  8. Zinder S. H., Brock T. D. Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. Appl Environ Microbiol. 1978 Feb;35(2):344–352. doi: 10.1128/aem.35.2.344-352.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Zinder S. H., Doemel W. N., Brock T. D. Production of volatile sulfur compounds during the decomposition of algal mats. Appl Environ Microbiol. 1977 Dec;34(6):859–860. doi: 10.1128/aem.34.6.859-860.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES