Abstract
A range of fluorescent viability dyes were used in conjunction with flow cytometry to rapidly enumerate viable bacteria from freshwater environments. Optimal labelling was achieved by using carboxyfluorescein diacetate or chemchrome B with a detergent-mediated permeabilization step. The viable bacterial count under optimal conditions was 7% in oligotrophic lake water and 75% in polluted river water.
Full Text
The Full Text of this article is available as a PDF (170.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Button D. K., Schut F., Quang P., Martin R., Robertson B. R. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol. 1993 Mar;59(3):881–891. doi: 10.1128/aem.59.3.881-891.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COLLINS V. G., WILLOUGHBY L. G. The distribution of bacteria and fungal spores in Blelham Tarn with particular reference to an experimental overturn. Arch Mikrobiol. 1962;43:294–307. doi: 10.1007/BF00405972. [DOI] [PubMed] [Google Scholar]
- Diaper J. P., Tither K., Edwards C. Rapid assessment of bacterial viability by flow cytometry. Appl Microbiol Biotechnol. 1992 Nov;38(2):268–272. doi: 10.1007/BF00174481. [DOI] [PubMed] [Google Scholar]
- Dorsey J., Yentsch C. M., Mayo S., McKenna C. Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae. Cytometry. 1989 Sep;10(5):622–628. doi: 10.1002/cyto.990100518. [DOI] [PubMed] [Google Scholar]
- Ferguson R. L., Buckley E. N., Palumbo A. V. Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol. 1984 Jan;47(1):49–55. doi: 10.1128/aem.47.1.49-55.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones J. G., Simon B. M. An investigation of errors in direct counts of aquatic bacteria by epifluorescence microscopy, with reference to a new method for dyeing membrane filters. J Appl Bacteriol. 1975 Dec;39(3):317–329. doi: 10.1111/j.1365-2672.1975.tb00578.x. [DOI] [PubMed] [Google Scholar]
- Morgan J. A., Rhodes G., Pickup R. W. Survival of nonculturable Aeromonas salmonicida in lake water. Appl Environ Microbiol. 1993 Mar;59(3):874–880. doi: 10.1128/aem.59.3.874-880.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Musgrove E. A., Hedley D. W. Measurement of intracellular pH. Methods Cell Biol. 1990;33:59–69. doi: 10.1016/s0091-679x(08)60511-7. [DOI] [PubMed] [Google Scholar]
- Porter J., Edwards C., Morgan J. A., Pickup R. W. Rapid, automated separation of specific bacteria from lake water and sewage by flow cytometry and cell sorting. Appl Environ Microbiol. 1993 Oct;59(10):3327–3333. doi: 10.1128/aem.59.10.3327-3333.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reasoner D. J., Geldreich E. E. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985 Jan;49(1):1–7. doi: 10.1128/aem.49.1.1-7.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez G. G., Phipps D., Ishiguro K., Ridgway H. F. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol. 1992 Jun;58(6):1801–1808. doi: 10.1128/aem.58.6.1801-1808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schut F., de Vries E. J., Gottschal J. C., Robertson B. R., Harder W., Prins R. A., Button D. K. Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions. Appl Environ Microbiol. 1993 Jul;59(7):2150–2160. doi: 10.1128/aem.59.7.2150-2160.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson H. A., Chused T. M. Lymphocyte membrane potential and Ca2+-sensitive potassium channels described by oxonol dye fluorescence measurements. J Cell Physiol. 1985 Oct;125(1):72–81. doi: 10.1002/jcp.1041250110. [DOI] [PubMed] [Google Scholar]