Abstract
Common preliminary treatments of samples of decaying material can involve changes in water content (e.g., via storage in relatively dry air or rinsing) that could conceivably result in loss or gain of fungal membranes and, consequently, ergosterol. A related problem is that collecting of ergosterol content data from widely distributed locales by shipment of samples ideally requires an inexpensive, safe alternative to submerging the samples in methanol for prevention of ergosterol loss. Experimental testing showed that fungal occupants of decaying salt marsh grass leaves did not exhibit loss or gain of ergosterol during air drying (to a water potential of <-8 MPa) or rewetting (to -0.8 MPa). Wet leaves of one grass species (Juncus roemerianus, black needlerush) could be fixed and dried for shipment by microwaving, or by fully drying after alcoholic or pentane fixation, without ergosterol loss, but those of smooth cordgrass (Spartina alterniflora) lost about 40% of their ergosterol content by all three of these drying methods. Ergosterol content of wet leaves of cordgrass could be maintained by alcoholic fixation and subsequent drying down to a thin film of alcohol.
Full Text
The Full Text of this article is available as a PDF (189.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Newell S. Y., Arsuffi T. L., Fallon R. D. Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl Environ Microbiol. 1988 Jul;54(7):1876–1879. doi: 10.1128/aem.54.7.1876-1879.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newell S. Y. Total and free ergosterol in mycelia of saltmarsh ascomycetes with access to whole leaves or aqueous extracts of leaves. Appl Environ Microbiol. 1994 Sep;60(9):3479–3482. doi: 10.1128/aem.60.9.3479-3482.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suberkropp K., Gessner M. O., Chauvet E. Comparison of ATP and ergosterol as indicators of fungal biomass associated with decomposing leaves in streams. Appl Environ Microbiol. 1993 Oct;59(10):3367–3372. doi: 10.1128/aem.59.10.3367-3372.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
