Abstract
Two different uranium mine waste heaps near Ronneburg, Thuringia, Germany, which contain the remains of the activity of the former uranium-mining Soviet-East German company Wismut AG, were analyzed for the occurrence of lithotrophic and chemoorganotropic leach bacteria. A total of 162 ore samples were taken up to a depth of 5 m. Cell counts of ferrous iron-, sulfur-, sulfur compound-, ammonia-, and nitrite-oxidizing bacteria were determined quantitatively by the most-probable-number technique. Sulfate-, nitrate-, ferric iron-, and manganese-reducing bacteria were also detected. In addition, the metabolic activity of sulfur- and iron-oxidizing bacteria was measured by microcalorimetry. Generally, all microorganisms mentioned above were detectable in the heaps. Aerobic and anaerobic microorganisms thrived up to a depth of 1.5 to 2 m. Up to 99% of Thiobacillus ferrooxidans cells, the dominant leaching bacteria, occurred to this depth. Their numbers correlated with the microbial activity measurements. Samples below 1.5 to 2 m exhibited reduced oxygen concentrations and reduced cell counts for all microorganisms.
Full Text
The Full Text of this article is available as a PDF (273.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brock T. D., Gustafson J. Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol. 1976 Oct;32(4):567–571. doi: 10.1128/aem.32.4.567-571.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper A. B. Population ecology of nitrifiers in a stream receiving geothermal inputs of ammonium. Appl Environ Microbiol. 1983 Apr;45(4):1170–1177. doi: 10.1128/aem.45.4.1170-1177.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corbin J. L. Liquid chromatographic-fluorescence determination of ammonia from nitrogenase reactions: a 2-min assay. Appl Environ Microbiol. 1984 May;47(5):1027–1030. doi: 10.1128/aem.47.5.1027-1030.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison A. P., Jr Microbial succession and mineral leaching in an artificial coal spoil. Appl Environ Microbiol. 1978 Dec;36(6):861–869. doi: 10.1128/aem.36.6.861-869.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison A. P., Jr The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol. 1984;38:265–292. doi: 10.1146/annurev.mi.38.100184.001405. [DOI] [PubMed] [Google Scholar]
- Hutchinson M., Johnstone K. I., White D. The taxonomy of certain thiobacilli. J Gen Microbiol. 1965 Dec;41(3):357–366. doi: 10.1099/00221287-41-3-357. [DOI] [PubMed] [Google Scholar]
- Lovley D. R., Phillips E. J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988 Jun;54(6):1472–1480. doi: 10.1128/aem.54.6.1472-1480.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovley D. R., Phillips E. J. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol. 1986 Apr;51(4):683–689. doi: 10.1128/aem.51.4.683-689.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundgren D. G., Silver M. Ore leaching by bacteria. Annu Rev Microbiol. 1980;34:263–283. doi: 10.1146/annurev.mi.34.100180.001403. [DOI] [PubMed] [Google Scholar]
- Matin A. Organic nutrition of chemolithotrophic bacteria. Annu Rev Microbiol. 1978;32:433–468. doi: 10.1146/annurev.mi.32.100178.002245. [DOI] [PubMed] [Google Scholar]
- Matin A., Rittenberg S. C. Enzymes of carbohydrate metabolism in Thiobacillus species. J Bacteriol. 1971 Jul;107(1):179–186. doi: 10.1128/jb.107.1.179-186.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POSTGATE J. R. Versatile medium for the enumeration of sulfate-reducing bacteria. Appl Microbiol. 1963 May;11:265–267. doi: 10.1128/am.11.3.265-267.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sand W., Rohde K., Sobotke B., Zenneck C. Evaluation of Leptospirillum ferrooxidans for Leaching. Appl Environ Microbiol. 1992 Jan;58(1):85–92. doi: 10.1128/aem.58.1.85-92.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver M. Distribution of iron-oxidizing bacteria in the nordic uranium tailings deposit, elliot lake, ontario, Canada. Appl Environ Microbiol. 1987 Apr;53(4):846–852. doi: 10.1128/aem.53.4.846-852.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southam G., Beveridge T. J. Enumeration of Thiobacilli within pH-Neutral and Acidic Mine Tailings and Their Role in the Development of Secondary Mineral Soil. Appl Environ Microbiol. 1992 Jun;58(6):1904–1912. doi: 10.1128/aem.58.6.1904-1912.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor B. F., Hoare D. S. Thiobacillus denitrificans as an obligate chemolithotroph. II. Cell suspension and enzymic studies. Arch Mikrobiol. 1971;80(3):262–276. doi: 10.1007/BF00410127. [DOI] [PubMed] [Google Scholar]
- Thamdrup B., Finster K., Hansen J. W., Bak F. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol. 1993 Jan;59(1):101–108. doi: 10.1128/aem.59.1.101-108.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuttle J. H., Dugan P. R. Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds. Can J Microbiol. 1976 May;22(5):719–730. doi: 10.1139/m76-105. [DOI] [PubMed] [Google Scholar]
