Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Aug;61(8):2943–2949. doi: 10.1128/aem.61.8.2943-2949.1995

Acetogenesis from Dichloromethane by a Two-Component Mixed Culture Comprising a Novel Bacterium

A Magli, F A Rainey, T Leisinger
PMCID: PMC1388551  PMID: 16535097

Abstract

A strictly anaerobic two-component culture able to grow exponentially with a doubling time of 20 h on a medium containing dichloromethane as the carbon and energy source was characterized. On a medium without sulfate, we observed (per mol of dichloromethane) a mass balance of 2 mol of chloride, 0.26 mol of acetate, 0.05 mol of formate, and 0.25 mol of carbon in biomass. One component of the culture, strain DMB, was identified by a 16S ribosomal DNA analysis as a Desulfovibrio sp. The other component, the gram-positive organism strain DMC, could not be isolated. It was possible, however, to associate strain DMC on a medium containing dichloromethane in a coculture with Acetobacterium woodii or Methanospirillum hungatei. Coculture of strain DMC with the Archaeon M. hungatei allowed us to specifically amplify by PCR the 16S rRNA gene of strain DMC. A phylogenetic analysis of the 16S ribosomal DNA sequence revealed that this organism groups within the radiation of the Clostridium-Bacillus subphylum and exhibits the highest levels of sequence similarity (89%) with Desulfotomaculum orientis and Desulfitobacterium dehalogenans. Since the novel organism strain DMC was able to grow acetogenically with dichloromethane when it was associated with one of three metabolically different partners and since, in contrast to strain DMB, strain DMC contained carbon monoxide dehydrogenase activity, this bacterium is responsible for both the dehalogenation of dichloromethane and the acetogenesis observed in the original two-component culture. The obligatory dependence of strain DMC on a partner during growth with dichloromethane is thought to stem from the need for a growth factor produced by the associated organism.

Full Text

The Full Text of this article is available as a PDF (607.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979 Jun;43(2):260–296. doi: 10.1128/mr.43.2.260-296.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Braus-Stromeyer S. A., Hermann R., Cook A. M., Leisinger T. Dichloromethane as the sole carbon source for an acetogenic mixed culture and isolation of a fermentative, dichloromethane-degrading bacterium. Appl Environ Microbiol. 1993 Nov;59(11):3790–3797. doi: 10.1128/aem.59.11.3790-3797.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DiStefano T. D., Gossett J. M., Zinder S. H. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl Environ Microbiol. 1992 Nov;58(11):3622–3629. doi: 10.1128/aem.58.11.3622-3629.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diekert G. B., Thauer R. K. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol. 1978 Nov;136(2):597–606. doi: 10.1128/jb.136.2.597-606.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fetzner S., Lingens F. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev. 1994 Dec;58(4):641–685. doi: 10.1128/mr.58.4.641-685.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Freedman D. L., Gossett J. M. Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl Environ Microbiol. 1991 Oct;57(10):2847–2857. doi: 10.1128/aem.57.10.2847-2857.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hohenberg H., Mannweiler K., Müller M. High-pressure freezing of cell suspensions in cellulose capillary tubes. J Microsc. 1994 Jul;175(Pt 1):34–43. doi: 10.1111/j.1365-2818.1994.tb04785.x. [DOI] [PubMed] [Google Scholar]
  9. Holliger C., Schraa G., Stams A. J., Zehnder A. J. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol. 1993 Sep;59(9):2991–2997. doi: 10.1128/aem.59.9.2991-2997.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holliger C., Schumacher W. Reductive dehalogenation as a respiratory process. Antonie Van Leeuwenhoek. 1994;66(1-3):239–246. doi: 10.1007/BF00871642. [DOI] [PubMed] [Google Scholar]
  11. Kennedy S. I., Fewson C. A. Enzymes of the mandelate pathway in Bacterium N.C.I.B. 8250. Biochem J. 1968 Apr;107(4):497–506. doi: 10.1042/bj1070497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mohn W. W., Tiedje J. M. Microbial reductive dehalogenation. Microbiol Rev. 1992 Sep;56(3):482–507. doi: 10.1128/mr.56.3.482-507.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rainey F. A., Stackebrandt E. 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol Lett. 1993 Oct 15;113(2):125–128. doi: 10.1111/j.1574-6968.1993.tb06501.x. [DOI] [PubMed] [Google Scholar]
  14. Stromeyer S. A., Winkelbauer W., Kohler H., Cook A. M., Leisinger T. Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis. Biodegradation. 1991;2(2):129–137. doi: 10.1007/BF00114603. [DOI] [PubMed] [Google Scholar]
  15. Utkin I., Woese C., Wiegel J. Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol. 1994 Oct;44(4):612–619. doi: 10.1099/00207713-44-4-612. [DOI] [PubMed] [Google Scholar]
  16. de Bruin W. P., Kotterman M. J., Posthumus M. A., Schraa G., Zehnder A. J. Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol. 1992 Jun;58(6):1996–2000. doi: 10.1128/aem.58.6.1996-2000.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES