Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Aug;61(8):3189–3191. doi: 10.1128/aem.61.8.3189-3191.1995

Selection and Characterization of Aspartokinase Feedback-Insensitive Mutants of Azotobacter vinelandii

C R Ekechukwu, T A Burns, T Melton
PMCID: PMC1388568  PMID: 16535114

Abstract

Aspartokinase feedback-insensitive mutants of Azotobacter vinelandii were selected as resistant to l-threonine, (beta)-hydroxynorvaline, or S-(2-aminoethyl)-l-cysteine. l-Threonine-resistant strains were classified into three groups based on their ability to transport l-threonine and their growth response to O-methylthreonine and (beta)-hydroxynorvaline. Most of the mutants were transport defective; however, some were desensitized to feedback regulation.

Full Text

The Full Text of this article is available as a PDF (226.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cafferata R. L., Freundlich M. Evidence for a methionine-controlled homoserine dehydrogenase in Salmonella typhimurium. J Bacteriol. 1969 Jan;97(1):193–198. doi: 10.1128/jb.97.1.193-198.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cassan M., Ronceray J., Patte J. C. Nucleotide sequence of the promoter region of the E. coli lysC gene. Nucleic Acids Res. 1983 Sep 24;11(18):6157–6166. doi: 10.1093/nar/11.18.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen G. N., Stanier R. Y., Le Bras G. Regulation of the biosynthesis of amino acids of the aspartate family in Coliform bacteria and Pseudomonads. J Bacteriol. 1969 Sep;99(3):791–801. doi: 10.1128/jb.99.3.791-801.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DATTA P., GEST H. CONTROL OF ENZYME ACTIVITY BY CONCERTED FEEDBACK INHIBITION. Proc Natl Acad Sci U S A. 1964 Oct;52:1004–1009. doi: 10.1073/pnas.52.4.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Datta P. Regulation of branched biosynthetic pathways in bacteria. Science. 1969 Aug 8;165(3893):556–562. doi: 10.1126/science.165.3893.556. [DOI] [PubMed] [Google Scholar]
  6. Gray B. H., Bernlohr R. W. The regulation of aspartokinase in Bacillus licheniformis. Biochim Biophys Acta. 1969 Apr 22;178(2):248–261. doi: 10.1016/0005-2744(69)90394-5. [DOI] [PubMed] [Google Scholar]
  7. Kara-murza S. N., Ivanovskaia L. V., Zhdanova N. I. Vliianie aminokislot na aktivnost' beta-aspartokinazy Cory nebacterium glutamicum shtamma dikogo tipa i ego mutanta. Prikl Biokhim Mikrobiol. 1978 May-Jun;14(3):345–353. [PubMed] [Google Scholar]
  8. McKenney D., Melton T. Isolation and characterization of ack and pta mutations in Azotobacter vinelandii affecting acetate-glucose diauxie. J Bacteriol. 1986 Jan;165(1):6–12. doi: 10.1128/jb.165.1.6-12.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Patte J. C., Le Bras G., Cohen G. N. Regulation by methionine of the synthesis of a third aspartokinase and of a second homoserine dehydrogenase in Escherichia coli K 12. Biochim Biophys Acta. 1967 Mar 22;136(2):245–247. doi: 10.1016/0304-4165(67)90069-4. [DOI] [PubMed] [Google Scholar]
  10. Petricek M., Rutberg L., Hederstedt L. The structural gene for aspartokinase II in Bacillus subtilis is closely linked to the sdh operon. FEMS Microbiol Lett. 1989 Oct 1;52(1-2):85–87. doi: 10.1016/0378-1097(89)90175-4. [DOI] [PubMed] [Google Scholar]
  11. Robert-Gero M., Poiret M., Cohen G. N. The aspartate kinase of Pseudomonas putida. Regulation of synthesis and activity. Biochim Biophys Acta. 1970 Apr 22;206(1):17–30. doi: 10.1016/0005-2744(70)90077-x. [DOI] [PubMed] [Google Scholar]
  12. Robert-Gero M., Sala-Trepat J. M., Le Borgne L. Regulation of aspartokinase in Azotobacter species. J Gen Microbiol. 1971 Aug;67(2):189–196. doi: 10.1099/00221287-67-2-189. [DOI] [PubMed] [Google Scholar]
  13. Schendel F. J., Bremmon C. E., Flickinger M. C., Guettler M., Hanson R. S. L-lysine production at 50 degrees C by mutants of a newly isolated and characterized methylotrophic Bacillus sp. Appl Environ Microbiol. 1990 Apr;56(4):963–970. doi: 10.1128/aem.56.4.963-970.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shiio I., Miyajima R. Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem. 1969 Jun;65(6):849–859. doi: 10.1093/oxfordjournals.jbchem.a129089. [DOI] [PubMed] [Google Scholar]
  15. Smulson M. E., Rabinovitz M., Breitman T. R. O-methylthreonine inhibition of growth and of threonine deaminase in Escherichia coli. J Bacteriol. 1967 Dec;94(6):1890–1895. doi: 10.1128/jb.94.6.1890-1895.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Strandberg G. W., Wilson P. W. Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can J Microbiol. 1968 Jan;14(1):25–31. doi: 10.1139/m68-005. [DOI] [PubMed] [Google Scholar]
  17. Thierbach G., Kalinowski J., Bachmann B., Pühler A. Cloning of a DNA fragment from Corynebacterium glutamicum conferring aminoethyl cysteine resistance and feedback resistance to aspartokinase. Appl Microbiol Biotechnol. 1990 Jan;32(4):443–448. doi: 10.1007/BF00903780. [DOI] [PubMed] [Google Scholar]
  18. Thèze J., Margarita D., Cohen G. N., Borne F., Patte J. C. Mapping of the structural genes of the three aspartokinases and of the two homoserine dehydrogenases of Escherichia coli K-12. J Bacteriol. 1974 Jan;117(1):133–143. doi: 10.1128/jb.117.1.133-143.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zakin M. M., Duchange N., Ferrara P., Cohen G. N. Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase ii-homoserine dehydrogenase II, and the bifunctional product of the thrA gene, aspartokinase I-homoserine dehydrogenase I, derive from a common ancestor. J Biol Chem. 1983 Mar 10;258(5):3028–3031. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES