Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Sep;61(9):3311–3315. doi: 10.1128/aem.61.9.3311-3315.1995

Characterization of a Nitrogen-Regulated Protein Identified by Cell Surface Biotinylation of a Marine Phytoplankton

B Palenik, J A Koke
PMCID: PMC1388574  PMID: 16535120

Abstract

The biotinylating reagent succinimidyl 6-(biotinamido)hexanoate was used to label the cell surfaces of the cosmopolitan, marine, eukaryotic microorganism Emiliania huxleyi under different growth conditions. Proteins characteristic of different nutrient conditions could be identified. In particular, a nitrogen-regulated protein, nrp1, has an 82-kDa subunit that is present under nitrogen limitation and during growth on urea. It is absent under phosphate limitation or during exponential growth on nitrate or ammonia. nrp1 is the major membrane or wall protein in nitrogen-limited cells and is found in several strains of E. huxleyi. It may be a useful biomarker for examining the physiological state of E. huxleyi cells in their environment.

Full Text

The Full Text of this article is available as a PDF (310.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharyya P., Volcani B. E. Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6386–6390. doi: 10.1073/pnas.77.11.6386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradburne J. A., Godfrey P., Choi J. H., Mathis J. N. In vivo labeling of Escherichia coli cell envelope proteins with N-hydroxysuccinimide esters of biotin. Appl Environ Microbiol. 1993 Mar;59(3):663–668. doi: 10.1128/aem.59.3.663-668.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cembella A. D., Antia N. J., Harrison P. J. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 1. Crit Rev Microbiol. 1984;10(4):317–391. doi: 10.3109/10408418209113567. [DOI] [PubMed] [Google Scholar]
  4. Della-Penna D., Christoffersen R. E., Bennett A. B. Biotinylated proteins as molecular weight standards on Western blots. Anal Biochem. 1986 Feb 1;152(2):329–332. doi: 10.1016/0003-2697(86)90417-3. [DOI] [PubMed] [Google Scholar]
  5. ElBerry H. M., Majumdar M. L., Cunningham T. S., Sumrada R. A., Cooper T. G. Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae. J Bacteriol. 1993 Aug;175(15):4688–4698. doi: 10.1128/jb.175.15.4688-4698.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grimes H. D., Slay R. M., Hodges T. K. Plant Plasma Membrane Proteins : II. Biotinylation of Daucus Carota Protoplasts and Detection of Plasma Membrane Polypeptides after Sds-Page. Plant Physiol. 1988 Oct;88(2):444–449. doi: 10.1104/pp.88.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hare J. F., Lee E. Metabolic behavior of cell surface biotinylated proteins. Biochemistry. 1989 Jan 24;28(2):574–580. doi: 10.1021/bi00428a024. [DOI] [PubMed] [Google Scholar]
  8. Hare J. F., Taylor K. Mechanisms of plasma membrane protein degradation: recycling proteins are degraded more rapidly than those confined to the cell surface. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5902–5906. doi: 10.1073/pnas.88.13.5902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ietswaart T., Schneider P. J., Prins R. A. Utilization of organic nitrogen sources by two phytoplankton species and a bacterial isolate in pure and mixed cultures. Appl Environ Microbiol. 1994 May;60(5):1554–1560. doi: 10.1128/aem.60.5.1554-1560.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones G. J., Morel F. M. Plasmalemma redox activity in the diatom thalassiosira: a possible role for nitrate reductase. Plant Physiol. 1988 May;87(1):143–147. doi: 10.1104/pp.87.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meier T., Arni S., Malarkannan S., Poincelet M., Hoessli D. Immunodetection of biotinylated lymphocyte-surface proteins by enhanced chemiluminescence: a nonradioactive method for cell-surface protein analysis. Anal Biochem. 1992 Jul;204(1):220–226. doi: 10.1016/0003-2697(92)90165-4. [DOI] [PubMed] [Google Scholar]
  12. Palenik B., Morel F. M. Amine oxidases of marine phytoplankton. Appl Environ Microbiol. 1991 Aug;57(8):2440–2443. doi: 10.1128/aem.57.8.2440-2443.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  14. Tschopp J., Schekman R. Two distinct subfractions in isolated Saccharomyces cerevisiae plasma membranes. J Bacteriol. 1983 Oct;156(1):222–229. doi: 10.1128/jb.156.1.222-229.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. von Boxberg Y., Wütz R., Schwarz U. Use of the biotin-avidin system for labelling, isolation and characterization of neural cell-surface proteins. Eur J Biochem. 1990 Jun 20;190(2):249–256. doi: 10.1111/j.1432-1033.1990.tb15569.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES