Abstract
The size structure of planktonic bacteria from a hypertrophic lake was investigated at 5- to 15-day intervals by means of a semiautomatic image analysis system during 1 year. Characteristic of this bacterial assemblage was the permanent presence of large filamentous bacteria and small cocci with cell sizes of <0.01 (mu)m(sup3). These filamentous bacteria, sometimes longer than 200 (mu)m and with cell volumes of up to 276 (mu)m(sup3), are larger than nanoflagellates (<20 (mu)m) and, even, metazoans living in the lake. Although they account for only 4 to 16% of bacterial abundance, their contribution to total bacterial biovolume was between 45 and 86%. An analysis of the food web structure indicates that this particular bacterial size structure may be the consequence of a strong bacterivory pressure by nanoflagellates and the absence of other larger bacterivores. The persistence of bacterial forms resistant to grazing has important consequences for the carbon flow within the microbial food web.
Full Text
The Full Text of this article is available as a PDF (448.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Perschmann G., Gräf W. Uber eine neue Spezies von Vitreoscilla (Vitreoscilla proteolytica) im Bodensee. Arch Hyg Bakteriol. 1970 Oct;154(2):128–137. [PubMed] [Google Scholar]
- Simek K., Chrzanowski T. H. Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microbiol. 1992 Nov;58(11):3715–3720. doi: 10.1128/aem.58.11.3715-3720.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
