Abstract
Spiroplasmavirus SVTS2, isolated from Spiroplasma melliferum TS2, produces plaques when inoculated onto lawns of Spiroplasma citri M200H, a derivative of the type strain Maroc R8A2. S. citri strains MR2 and MR3, originally selected as colonies growing within plaques on a lawn of M200H inoculated with SVTS2, were resistant to SVTS2. Genomic DNA fingerprints and electrophoretic protein profiles of M200H, MR2, and MR3 were similar, but three proteins present in M200H were missing or significantly reduced in both resistant lines. None of these three polypeptides reacted with antiserum against S. citri membrane proteins, indicating that they probably are not surface-located virus receptors. Electroporation with SVTS2 DNA produced 1.5 x 10(sup5) transfectants per (mu)g of DNA in M200H but none in MR2 or MR3, suggesting that resistance may result from inhibition of viral replication. The digestion patterns of the extrachromosomal double-stranded (ds) DNA of these lines were similar. Three TaqI fragments of MR2 extrachromosomal DNA that were not present in M200H extrachromosomal DNA hybridized strongly to an SVTS2 probe, and two of these fragments plus an additional one hybridized with the MR3 extrachromosomal DNA, indicating that a fragment of SVTS2 DNA was present in the extrachromosomal ds DNA of MR2 and MR3 but not of M200H. When the restricted genomes of all three lines were probed with SVTS2 DNA, strong hybridization to two EcoRI fragments of chromosomal MR2 and MR3 DNA but not M200H DNA indicated that SVTS2 DNA had integrated into the genomes of MR2 and MR3 but not of M200H. When MR3 extrachromosomal ds DNA containing a 2.1-kb SVTS2 DNA fragment was transfected into M200H, the transformed spiroplasmas were resistant to SVTS2. These results suggest that SVTS2 DNA fragments, possibly integrated into the chromosomal or extrachromosomal DNA of a previously susceptible spiroplasma, may function as viral incompatibility elements, providing resistance to superinfection by SVTS2.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
- Davis R. E., Lee I. M., Basciano L. K. Spiroplasmas: serological grouping of strains associated with plants and insects. Can J Microbiol. 1979 Aug;25(8):861–866. doi: 10.1139/m79-128. [DOI] [PubMed] [Google Scholar]
- Dong Q., Sadouk A., van der Lelie D., Taghavi S., Ferhat A., Nuyten J. M., Borremans B., Mergeay M., Toussaint A. Cloning and sequencing of IS1086, an Alcaligenes eutrophus insertion element related to IS30 and IS4351. J Bacteriol. 1992 Dec;174(24):8133–8138. doi: 10.1128/jb.174.24.8133-8138.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dybvig K., Maniloff J. Integration and lysogeny by an enveloped mycoplasma virus. J Gen Virol. 1983 Aug;64(Pt 8):1781–1785. doi: 10.1099/0022-1317-64-8-1781. [DOI] [PubMed] [Google Scholar]
- Herring A. J., Inglis N. F., Ojeh C. K., Snodgrass D. R., Menzies J. D. Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. J Clin Microbiol. 1982 Sep;16(3):473–477. doi: 10.1128/jcm.16.3.473-477.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Renaudin J., Aullo P., Vignault J. C., Bové J. M. Complete nucleotide sequence of the genome of Spiroplasma citri virus SpV1-R8A2 B. Nucleic Acids Res. 1990 Mar 11;18(5):1293–1293. doi: 10.1093/nar/18.5.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renaudin J., Pascarel M. C., Bové J. M. Spiroplasma virus 4: nucleotide sequence of the viral DNA, regulatory signals, and proposed genome organization. J Bacteriol. 1987 Nov;169(11):4950–4961. doi: 10.1128/jb.169.11.4950-4961.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riethman H. C., Boyer M. J., Wise K. S. Triton X-114 phase fractionation of an integral membrane surface protein mediating monoclonal antibody killing of Mycoplasma hyorhinis. Infect Immun. 1987 May;55(5):1094–1100. doi: 10.1128/iai.55.5.1094-1100.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stamburski C., Renaudin J., Bove J. M. First step toward a virus-derived vector for gene cloning and expression in spiroplasmas, organisms which read UGA as a tryptophan codon: synthesis of chloramphenicol acetyltransferase in Spiroplasma citri. J Bacteriol. 1991 Apr;173(7):2225–2230. doi: 10.1128/jb.173.7.2225-2230.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson D. L., Renaudin J., Bové J. M. Nucleotide sequence of the Spiroplasma citri fibril protein gene. J Bacteriol. 1991 Jul;173(14):4353–4362. doi: 10.1128/jb.173.14.4353-4362.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye F., Laigret F., Whitley J. C., Citti C., Finch L. R., Carle P., Renaudin J., Bové J. M. A physical and genetic map of the Spiroplasma citri genome. Nucleic Acids Res. 1992 Apr 11;20(7):1559–1565. doi: 10.1093/nar/20.7.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Avoort H. G., van der Ende A., van Arkel G. A., Weisbeek P. J. Regions of incompatibility in single-stranded DNA bacteriophages phi X174 and G4. J Virol. 1984 May;50(2):533–540. doi: 10.1128/jvi.50.2.533-540.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]