Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Nov;61(11):3998–4003. doi: 10.1128/aem.61.11.3998-4003.1995

Alternative Function of the Electron Transport System in Azotobacter vinelandii: Removal of Excess Reductant by the Cytochrome d Pathway

J Liu, F Lee, C Lin, X Yao, J W Davenport, T Wong
PMCID: PMC1388599  PMID: 16535163

Abstract

The N(inf2)-fixing bacterium Azotobacter vinelandii was grown in an O(inf2)-regulated chemostat with glucose or galactose as substrate. Increasing the O(inf2) partial pressure resulted in identical synthesis of the noncoupled cytochrome d terminal oxidase, which is consistent with the hypothesis that A. vinelandii uses high rates of respiration to protect the nitrogenase from oxygen. However, cell growth on glucose showed a lower yield of biomass, higher glycolytic rate, higher respiratory rate, and lower cytochrome o content than cell growth on galactose. Elemental analysis indicated no appreciable change in the C-to-N ratio of cell cultures, suggesting that the major composition of the cell was not influenced by the carbon source. A poor coordination of glucose and nitrogen metabolisms in A. vinelandii was suggested. The rapid hydrolysis of glucose resulted in carbonaceous accumulation in cells. Thus, Azotobacter species must induce a futile electron transport to protect cells from the high rates of glucose uptake and glycolysis.

Full Text

The Full Text of this article is available as a PDF (310.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackrell B. A., Jones C. W. The respiratory system of Azotobacter vinelandii. 1. Properties of phosphorylating respiratory membranes. Eur J Biochem. 1971 May 11;20(1):22–28. doi: 10.1111/j.1432-1033.1971.tb01357.x. [DOI] [PubMed] [Google Scholar]
  2. Ackrell B. A., Jones C. W. The respiratory system of Azotobacter vinelandii. 2. Oxygen effects. Eur J Biochem. 1971 May 11;20(1):29–35. doi: 10.1111/j.1432-1033.1971.tb01358.x. [DOI] [PubMed] [Google Scholar]
  3. Barnes E. M., Jr Glucose transport in membrane vesicles from Azotobacter vinelandii. Arch Biochem Biophys. 1974 Jul;163(1):416–422. doi: 10.1016/0003-9861(74)90493-7. [DOI] [PubMed] [Google Scholar]
  4. Barrera C. R., Jurtshuk P. Characterization of the highly active isocitrate (NADP+) dehydrogenase of Azotobacter vinelandii. Biochim Biophys Acta. 1970 Dec 16;220(3):416–429. doi: 10.1016/0005-2744(70)90273-1. [DOI] [PubMed] [Google Scholar]
  5. DE LEY J., DOUDOROFF M. The metabolism of D-galactose in Pseudomonas saccharophila. J Biol Chem. 1957 Aug;227(2):745–757. [PubMed] [Google Scholar]
  6. Dalton H., Postgate J. R. Effect of oxygen on growth of Azotobacter chroococcum in batch and continuous cultures. J Gen Microbiol. 1968 Dec;54(3):463–473. doi: 10.1099/00221287-54-3-463. [DOI] [PubMed] [Google Scholar]
  7. Drozd J., Postgate J. R. Effects of oxygen on acetylene reduction, cytochrome content and respiratory activity of Azotobacter chroococcum. J Gen Microbiol. 1970 Sep;63(1):63–73. doi: 10.1099/00221287-63-1-63. [DOI] [PubMed] [Google Scholar]
  8. George S. E., Costenbader C. J., Melton T. Diauxic growth in Azotobacter vinelandii. J Bacteriol. 1985 Nov;164(2):866–871. doi: 10.1128/jb.164.2.866-871.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haaker H., Veeger C. Regulation of respiration and nitrogen fixation in different types of Azotobacter vinelandii. Eur J Biochem. 1976 Apr 1;63(2):499–507. doi: 10.1111/j.1432-1033.1976.tb10253.x. [DOI] [PubMed] [Google Scholar]
  10. Haddock B. A., Jones C. W. Bacterial respiration. Bacteriol Rev. 1977 Mar;41(1):47–99. doi: 10.1128/br.41.1.47-99.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harrison D. E. The regulation of respiration rate in growing bacteria. Adv Microb Physiol. 1976;14(11):243–313. doi: 10.1016/s0065-2911(08)60229-5. [DOI] [PubMed] [Google Scholar]
  12. Jurtshuk P., Jr, Mueller T. J., Wong T. Y. Isolation and purification of the cytochrome oxidase of Azotobacter vinelandii. Biochim Biophys Acta. 1981 Sep 14;637(2):374–382. doi: 10.1016/0005-2728(81)90176-6. [DOI] [PubMed] [Google Scholar]
  13. MORTENSON L. E., HAMILTON P. B., WILSON P. W. Dissimilation of 6-phosphogluconate by Azotobacter vinelandii. Biochim Biophys Acta. 1955 Feb;16(2):238–244. doi: 10.1016/0006-3002(55)90209-2. [DOI] [PubMed] [Google Scholar]
  14. MORTENSON L. E., WILSON P. W. Initial stages in the breakdown of carbohydrates by the Azotobacter vinelandii. Arch Biochem Biophys. 1954 Dec;53(2):425–435. doi: 10.1016/0003-9861(54)90423-3. [DOI] [PubMed] [Google Scholar]
  15. McKenney D., Melton T. Isolation and characterization of ack and pta mutations in Azotobacter vinelandii affecting acetate-glucose diauxie. J Bacteriol. 1986 Jan;165(1):6–12. doi: 10.1128/jb.165.1.6-12.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Russell J. B., Cook G. M. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev. 1995 Mar;59(1):48–62. doi: 10.1128/mr.59.1.48-62.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. STILL G. G., WANG C. H. GLUCOSE CATABOLISM IN AZOTOBACTER VINELANDII. Arch Biochem Biophys. 1964 Apr;105:126–132. doi: 10.1016/0003-9861(64)90243-7. [DOI] [PubMed] [Google Scholar]
  18. Senior P. J., Dawes E. A. Poly- -hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii. Biochem J. 1971 Nov;125(1):55–66. doi: 10.1042/bj1250055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Taber H. Isolation and properties of cytochrome a deficient mutants of Bacillus subtilis. J Gen Microbiol. 1974 Apr;81(2):435–444. doi: 10.1099/00221287-81-2-435. [DOI] [PubMed] [Google Scholar]
  20. Weston J. A., Knowles C. J. A soluble CO-binding c-type cytochrome from the marine bacterium Beneckea natriegens. Biochim Biophys Acta. 1973 Apr 27;305(1):11–18. doi: 10.1016/0005-2728(73)90226-0. [DOI] [PubMed] [Google Scholar]
  21. Wong T. Y. Effects of Calcium on Sugar Transport in Azotobacter vinelandii. Appl Environ Microbiol. 1993 Jan;59(1):89–92. doi: 10.1128/aem.59.1.89-92.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wong T. Y. Effects of Mannose on the Growth of N(2)-Fixing Azotobacter vinelandii. Appl Environ Microbiol. 1988 Feb;54(2):473–475. doi: 10.1128/aem.54.2.473-475.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wong T. Y. Melibiose is hydrolyzed exocellularly by an inducible exo-alpha-galactosidase in Azotobacter vinelandii. Appl Environ Microbiol. 1990 Jul;56(7):2271–2273. doi: 10.1128/aem.56.7.2271-2273.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wong T. Y., Murdock C. A., Concannon S. P., Lockey T. D. Simultaneous uptake of galactose and glucose by Azotobacter vinelandii. Biochem Cell Biol. 1991 Oct-Nov;69(10-11):711–714. doi: 10.1139/o91-106. [DOI] [PubMed] [Google Scholar]
  25. Wong T. Y., Pei H., Bancroft K., Childers G. W. Diauxic Growth of Azotobacter vinelandii on Galactose and Glucose: Regulation of Glucose Transport by Another Hexose. Appl Environ Microbiol. 1995 Feb;61(2):430–433. doi: 10.1128/aem.61.2.430-433.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wong T. Y., Yao X. T. The DeLey-Doudoroff Pathway of Galactose Metabolism in Azotobacter vinelandii. Appl Environ Microbiol. 1994 Jun;60(6):2065–2068. doi: 10.1128/aem.60.6.2065-2068.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yates M. G. Control of respiration and nitrogen fixation by oxygen and adenine nucleotides in N2-grown Azotobacter chroococcum. J Gen Microbiol. 1970 Mar;60(3):393–401. doi: 10.1099/00221287-60-3-393. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES