Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Nov;61(11):4016–4021. doi: 10.1128/aem.61.11.4016-4021.1995

Diversity of Rhizobia Nodulating Phaseolus vulgaris L. in Two Kenyan Soils with Contrasting pHs

B Anyango, K J Wilson, J L Beynon, K E Giller
PMCID: PMC1388601  PMID: 16535165

Abstract

Rhizobia were isolated from two Kenyan soils with pHs of 4.5 and 6.8 and characterized on the basis of their host ranges for nodulation and nitrogen fixation, colony morphologies, restriction fragment fingerprints, and hybridization with a nifH probe. The populations of rhizobia nodulating Phaseolus vulgaris in the two soils were similar in numbers and in effectiveness of N(inf2) fixation but were markedly different in composition. The population in the Naivasha soil (pH 6.8) was dominated by isolates specific in host range for nodulation to P. vulgaris; these all had multiple copies, in most cases four, of the structural nitrogenase gene nifH. Only one of the isolates from this soil formed effective nodules on Leucaena leucocephala, and this isolate had only a single copy of nifH. By contrast, the population in the acid Daka-ini soil (pH 4.5) was composed largely of broad-host-range isolates which had single copies of nifH. The isolates from the Daka-ini soil which were specific to P. vulgaris generally had three copies of nifH, although one isolate had only two copies. These rhizobial isolates are indigenous to Kenyan soils and yet have marked similarities to previously described Rhizobium species from other continents.

Full Text

The Full Text of this article is available as a PDF (493.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eardly B. D., Wang F. S., Whittam T. S., Selander R. K. Species limits in Rhizobium populations that nodulate the common bean (Phaseolus vulgaris). Appl Environ Microbiol. 1995 Feb;61(2):507–512. doi: 10.1128/aem.61.2.507-512.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Laguerre G., Allard M. R., Revoy F., Amarger N. Rapid Identification of Rhizobia by Restriction Fragment Length Polymorphism Analysis of PCR-Amplified 16S rRNA Genes. Appl Environ Microbiol. 1994 Jan;60(1):56–63. doi: 10.1128/aem.60.1.56-63.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Martínez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol. 1991 Jul;41(3):417–426. doi: 10.1099/00207713-41-3-417. [DOI] [PubMed] [Google Scholar]
  4. Quinto C., De La Vega H., Flores M., Leemans J., Cevallos M. A., Pardo M. A., Azpiroz R., De Lourdes Girard M., Calva E., Palacios R. Nitrogenase reductase: A functional multigene family in Rhizobium phaseoli. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1170–1174. doi: 10.1073/pnas.82.4.1170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Segovia L., Young J. P., Martínez-Romero E. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol. 1993 Apr;43(2):374–377. doi: 10.1099/00207713-43-2-374. [DOI] [PubMed] [Google Scholar]
  6. Soberón-Chávez G., Nájera R., Olivera H., Segovia L. Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid. J Bacteriol. 1986 Aug;167(2):487–491. doi: 10.1128/jb.167.2.487-491.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES