Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Dec;61(12):4315–4320. doi: 10.1128/aem.61.12.4315-4320.1995

Use of Feedback-Resistant Threonine Dehydratases of Corynebacterium glutamicum To Increase Carbon Flux towards l-Isoleucine

S Morbach, H Sahm, L Eggeling
PMCID: PMC1388650  PMID: 16535185

Abstract

The biosynthesis of l-isoleucine proceeds via a highly regulated reaction sequence connected with l-lysine and l-threonine synthesis. Using defined genetic Corynebacterium glutamicum strains characterized by different fluxes through the homoserine dehydrogenase reaction, we analyzed the influence of four different ilvA alleles (encoding threonine dehydratase) in vectors with two different copy numbers on the total flux towards l-isoleucine. For this purpose, 18 different strains were constructed and analyzed. The result was that unlike ilvA in vectors with low copy numbers, ilvA in high-copy-number vectors increased the final l-isoleucine yield by about 20%. An additional 40% increase in l-isoleucine yield was obtained by the use of ilvA alleles encoding feedback-resistant threonine dehydratases. The strain with the highest yield was characterized by three hom(Fbr) copies encoding feedback-resistant homoserine dehydrogenase and ilvA(Fbr) encoding feedback-resistant threonine dehydratase on a multicopy plasmid. It accumulated 96 mM l-isoleucine, without any l-threonine as a by-product. The highest specific productivity was 0.052 g of l-isoleucine per g of biomass per h. This comparative flux analysis of isogenic strains showed that high levels of l-isoleucine formation from glucose can be achieved by the appropriate balance of homoserine dehydrogenase and threonine dehydratase activities in a strain background with feedback-resistant aspartate kinase. However, still-unknown limitations are present within the entire reaction sequence.

Full Text

The Full Text of this article is available as a PDF (227.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer J. A., Solow-Cordero D. E., Sinskey A. J. A C-terminal deletion in Corynebacterium glutamicum homoserine dehydrogenase abolishes allosteric inhibition by L-threonine. Gene. 1991 Oct 30;107(1):53–59. doi: 10.1016/0378-1119(91)90296-n. [DOI] [PubMed] [Google Scholar]
  2. Colón G. E., Jetten M. S., Nguyen T. T., Gubler M. E., Follettie M. T., Sinskey A. J., Stephanopoulos G. Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799. Appl Environ Microbiol. 1995 Jan;61(1):74–78. doi: 10.1128/aem.61.1.74-78.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cremer Josef, Eggeling Lothar, Sahm Hermann. Control of the Lysine Biosynthesis Sequence in Corynebacterium glutamicum as Analyzed by Overexpression of the Individual Corresponding Genes. Appl Environ Microbiol. 1991 Jun;57(6):1746–1752. doi: 10.1128/aem.57.6.1746-1752.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eikmanns B. J., Metzger M., Reinscheid D., Kircher M., Sahm H. Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol. 1991 Feb;34(5):617–622. doi: 10.1007/BF00167910. [DOI] [PubMed] [Google Scholar]
  5. Eisenstein E. Cloning, expression, purification, and characterization of biosynthetic threonine deaminase from Escherichia coli. J Biol Chem. 1991 Mar 25;266(9):5801–5807. [PubMed] [Google Scholar]
  6. Follettie M. T., Shin H. K., Sinskey A. J. Organization and regulation of the Corynebacterium glutamicum hom-thrB and thrC loci. Mol Microbiol. 1988 Jan;2(1):53–62. doi: 10.1111/j.1365-2958.1988.tb00006.x. [DOI] [PubMed] [Google Scholar]
  7. Ishida M., Kawashima H., Sato K., Hashiguchi K., Ito H., Enei H., Nakamori S. Factors improving L-threonine production by a three L-threonine biosynthetic genes-amplified recombinant strain of Brevibacterium lactofermentum. Biosci Biotechnol Biochem. 1994 Apr;58(4):768–770. doi: 10.1271/bbb.58.768. [DOI] [PubMed] [Google Scholar]
  8. Jetten M. S., Follettie M. T., Sinskey A. J. Effect of different levels of aspartokinase on the lysine production by Corynebacterium lactofermentum. Appl Microbiol Biotechnol. 1995 Apr;43(1):76–82. doi: 10.1007/BF00170626. [DOI] [PubMed] [Google Scholar]
  9. Jäger W., Schäfer A., Pühler A., Labes G., Wohlleben W. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol. 1992 Aug;174(16):5462–5465. doi: 10.1128/jb.174.16.5462-5465.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keilhauer C., Eggeling L., Sahm H. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol. 1993 Sep;175(17):5595–5603. doi: 10.1128/jb.175.17.5595-5603.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Komatsubara S., Kisumi M., Chibata I. Transductional construction of a threonine-hyperproducing strain of Serratia marcescens: lack of feedback controls of three aspartokinases and two homoserine dehydrogenases. Appl Environ Microbiol. 1983 May;45(5):1445–1452. doi: 10.1128/aem.45.5.1445-1452.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kronemeyer W., Peekhaus N., Krämer R., Sahm H., Eggeling L. Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J Bacteriol. 1995 Mar;177(5):1152–1158. doi: 10.1128/jb.177.5.1152-1158.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liebl W., Bayerl A., Schein B., Stillner U., Schleifer K. H. High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett. 1989 Dec;53(3):299–303. doi: 10.1016/0378-1097(89)90234-6. [DOI] [PubMed] [Google Scholar]
  14. Menkel E., Thierbach G., Eggeling L., Sahm H. Influence of increased aspartate availability on lysine formation by a recombinant strain of Corynebacterium glutamicum and utilization of fumarate. Appl Environ Microbiol. 1989 Mar;55(3):684–688. doi: 10.1128/aem.55.3.684-688.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miyajima R., Otsuka S., Shiio I. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. I. Inhibition by amino acids of the enzymes in threonine biosynthesis. J Biochem. 1968 Feb;63(2):139–148. doi: 10.1093/oxfordjournals.jbchem.a128754. [DOI] [PubMed] [Google Scholar]
  16. Miyajima R., Shiio I. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. VI. Effects of isoleucine and valine on threonine dehydratase activity and its formation. J Biochem. 1972 Jun;71(6):951–960. doi: 10.1093/oxfordjournals.jbchem.a129866. [DOI] [PubMed] [Google Scholar]
  17. Möckel B., Eggeling L., Sahm H. Functional and structural analyses of threonine dehydratase from Corynebacterium glutamicum. J Bacteriol. 1992 Dec;174(24):8065–8072. doi: 10.1128/jb.174.24.8065-8072.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Möckel B., Eggeling L., Sahm H. Threonine dehydratases of Corynebacterium glutamicum with altered allosteric control: their generation and biochemical and structural analysis. Mol Microbiol. 1994 Sep;13(5):833–842. doi: 10.1111/j.1365-2958.1994.tb00475.x. [DOI] [PubMed] [Google Scholar]
  19. Nudel B. C., Pueyo M. G., Judewicz N. D., Guilietti A. M. Stability of Escherichia coli strains harboring recombinant plasmids for L-threonine production. Antonie Van Leeuwenhoek. 1989 Oct;56(3):273–282. doi: 10.1007/BF00418939. [DOI] [PubMed] [Google Scholar]
  20. Pátek M., Krumbach K., Eggeling L., Sahm H. Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol. 1994 Jan;60(1):133–140. doi: 10.1128/aem.60.1.133-140.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reinscheid D. J., Kronemeyer W., Eggeling L., Eikmanns B. J., Sahm H. Stable Expression of hom-1-thrB in Corynebacterium glutamicum and Its Effect on the Carbon Flux to Threonine and Related Amino Acids. Appl Environ Microbiol. 1994 Jan;60(1):126–132. doi: 10.1128/aem.60.1.126-132.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schrumpf B., Schwarzer A., Kalinowski J., Pühler A., Eggeling L., Sahm H. A functionally split pathway for lysine synthesis in Corynebacterium glutamicium. J Bacteriol. 1991 Jul;173(14):4510–4516. doi: 10.1128/jb.173.14.4510-4516.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schäfer A., Kalinowski J., Simon R., Seep-Feldhaus A. H., Pühler A. High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol. 1990 Mar;172(3):1663–1666. doi: 10.1128/jb.172.3.1663-1666.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shiio I., Miyajima R. Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem. 1969 Jun;65(6):849–859. doi: 10.1093/oxfordjournals.jbchem.a129089. [DOI] [PubMed] [Google Scholar]
  25. Vrljic M., Kronemeyer W., Sahm H., Eggeling L. Unbalance of L-lysine flux in Corynebacterium glutamicum and its use for the isolation of excretion-defective mutants. J Bacteriol. 1995 Jul;177(14):4021–4027. doi: 10.1128/jb.177.14.4021-4027.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES