Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Dec;61(12):4334–4342. doi: 10.1128/aem.61.12.4334-4342.1995

Triggering Glutamate Excretion in Corynebacterium glutamicum by Modulating the Membrane State with Local Anesthetics and Osmotic Gradients

C Lambert, A Erdmann, M Eikmanns, R Kramer
PMCID: PMC1388651  PMID: 16535186

Abstract

Corynebacterium glutamicum can be triggered to excrete glutamate by the addition of local anesthetics, particularly tetracaine. Glutamate efflux is a carrier-mediated process and not due to unspecific membrane permeabilization. The concentration of local anesthetics triggering optimum excretion depended on the type of anesthetic and varied, ranging from 0.1 (chlorpromazine), 1.3 (tetracaine), and 2.6 mM (butacaine) to 15 mM (benzocaine), in close resemblance to the order of efficiency in anesthetic effect. The onset of glutamate excretion was not correlated to a change in the viscosity or fluidity of the membrane, as measured by electron spin resonance spectroscopy, nor was it related to an action of the anesthetic as an uncoupler. Tetracaine-triggered glutamate excretion was sensitive to changes in the transmembrane osmotic gradient, although an osmotic gradient alone could not trigger glutamate excretion. Tetracaine-triggered glutamate efflux was inhibited by an external rise in osmolality and stimulated by a corresponding decrease. The effects of osmotic gradients and the addition of local anesthetics on glutamate excretion were mutually exchangeable, indicating similar modes of action. We suggest that this common principle is a change in the membrane strain. C. glutamicum cells which excrete glutamate without manipulation of the membrane, e.g., biotin-limited cells or glutamate production mutants, were not stimulated by the addition of tetracaine.

Full Text

The Full Text of this article is available as a PDF (263.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adade A. B., O'Brien K. L., Vanderkooi G. Temperature dependence and mechanism of local anesthetic effects on mitochondrial adenosinetriphosphatase. Biochemistry. 1987 Nov 17;26(23):7297–7303. doi: 10.1021/bi00397a015. [DOI] [PubMed] [Google Scholar]
  2. Arias H. R., Sankaram M. B., Marsh D., Barrantes F. J. Effect of local anaesthetics on steroid-nicotinic acetylcholine receptor interactions in native membranes of Torpedo marmorata electric organ. Biochim Biophys Acta. 1990 Sep 7;1027(3):287–294. doi: 10.1016/0005-2736(90)90320-n. [DOI] [PubMed] [Google Scholar]
  3. Auger M., Jarrell H. C., Smith I. C., Siminovitch D. J., Mantsch H. H., Wong P. T. Effects of the local anesthetic tetracaine on the structural and dynamic properties of lipids in model membranes: a high-pressure Fourier transform infrared study. Biochemistry. 1988 Aug 9;27(16):6086–6093. doi: 10.1021/bi00416a038. [DOI] [PubMed] [Google Scholar]
  4. Berrier C., Coulombe A., Szabo I., Zoratti M., Ghazi A. Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur J Biochem. 1992 Jun 1;206(2):559–565. doi: 10.1111/j.1432-1033.1992.tb16960.x. [DOI] [PubMed] [Google Scholar]
  5. Bunch A. W., Harris R. E. The manipulation of micro-organisms for the production of secondary metabolites. Biotechnol Genet Eng Rev. 1986;4:117–144. doi: 10.1080/02648725.1986.10647825. [DOI] [PubMed] [Google Scholar]
  6. Böttner M., Winter R. Influence of the local anesthetic tetracaine on the phase behavior and the thermodynamic properties of phospholipid bilayers. Biophys J. 1993 Nov;65(5):2041–2046. doi: 10.1016/S0006-3495(93)81254-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Culham D. E., Lasby B., Marangoni A. G., Milner J. L., Steer B. A., van Nues R. W., Wood J. M. Isolation and sequencing of Escherichia coli gene proP reveals unusual structural features of the osmoregulatory proline/betaine transporter, ProP. J Mol Biol. 1993 Jan 5;229(1):268–276. doi: 10.1006/jmbi.1993.1030. [DOI] [PubMed] [Google Scholar]
  8. Demain A. L., Birnbaum J. Alteration of permeability for the release of metabolites from the microbial cell. Curr Top Microbiol Immunol. 1968;46:1–25. doi: 10.1007/978-3-642-46121-7_1. [DOI] [PubMed] [Google Scholar]
  9. Duperray F., Jezequel D., Ghazi A., Letellier L., Shechter E. Excretion of glutamate from Corynebacterium glutamicum triggered by amine surfactants. Biochim Biophys Acta. 1992 Jan 31;1103(2):250–258. doi: 10.1016/0005-2736(92)90094-3. [DOI] [PubMed] [Google Scholar]
  10. Ebbighausen H., Weil B., Krämer R. Transport of branched-chain amino acids in Corynebacterium glutamicum. Arch Microbiol. 1989;151(3):238–244. doi: 10.1007/BF00413136. [DOI] [PubMed] [Google Scholar]
  11. Ertel A., Marangoni A. G., Marsh J., Hallett F. R., Wood J. M. Mechanical properties of vesicles. I. Coordinated analysis of osmotic swelling and lysis. Biophys J. 1993 Feb;64(2):426–434. doi: 10.1016/S0006-3495(93)81383-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Farwick M., Siewe R. M., Krämer R. Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum. J Bacteriol. 1995 Aug;177(16):4690–4695. doi: 10.1128/jb.177.16.4690-4695.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garlid K. D., Nakashima R. A. Studies on the mechanism of uncoupling by amine local anesthetics. Evidence for mitochondrial proton transport mediated by lipophilic ion pairs. J Biol Chem. 1983 Jul 10;258(13):7974–7980. [PubMed] [Google Scholar]
  14. Gordon L. M., Sauerheber R. D., Esgate J. A., Dipple I., Marchmont R. J., Houslay M. D. The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes. J Biol Chem. 1980 May 25;255(10):4519–4527. [PubMed] [Google Scholar]
  15. Granett S., Villarejo M. Regulation of gene expression in Escherichia coli by the local anesthetic procaine. J Mol Biol. 1982 Sep 15;160(2):363–367. doi: 10.1016/0022-2836(82)90181-4. [DOI] [PubMed] [Google Scholar]
  16. Gutmann M., Hoischen C., Krämer R. Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. Biochim Biophys Acta. 1992 Nov 23;1112(1):115–123. doi: 10.1016/0005-2736(92)90261-j. [DOI] [PubMed] [Google Scholar]
  17. Hallett F. R., Marsh J., Nickel B. G., Wood J. M. Mechanical properties of vesicles. II. A model for osmotic swelling and lysis. Biophys J. 1993 Feb;64(2):435–442. doi: 10.1016/S0006-3495(93)81384-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoischen C., Krämer R. Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum. J Bacteriol. 1990 Jun;172(6):3409–3416. doi: 10.1128/jb.172.6.3409-3416.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hornby A. P., Cullis P. R. Influence of local and neutral anaesthetics on the polymorphic phase preferences of egg yolk phosphatidylethanolamine. Biochim Biophys Acta. 1981 Oct 2;647(2):285–292. doi: 10.1016/0005-2736(81)90256-x. [DOI] [PubMed] [Google Scholar]
  20. Houssin C., Eynard N., Shechter E., Ghazi A. Effect of osmotic pressure on membrane energy-linked functions in Escherichia coli. Biochim Biophys Acta. 1991 Jan 3;1056(1):76–84. doi: 10.1016/s0005-2728(05)80075-1. [DOI] [PubMed] [Google Scholar]
  21. Kelusky E. C., Boulanger Y., Schreier S., Smith I. C. A 2H-NMR study on the interactions of the local anesthetic tetracaine with membranes containing phosphatidylserine. Biochim Biophys Acta. 1986 Mar 27;856(1):85–90. doi: 10.1016/0005-2736(86)90013-1. [DOI] [PubMed] [Google Scholar]
  22. Kelusky E. C., Smith I. C. Characterization of the binding of the local anesthetics procaine and tetracaine to model membranes of phosphatidylethanolamine: a deuterium nuclear magnetic resonance study. Biochemistry. 1983 Dec 6;22(25):6011–6017. doi: 10.1021/bi00294a049. [DOI] [PubMed] [Google Scholar]
  23. Klein R. A., Moore M. J., Smith M. W. Selective diffusion of neutral amino acids across lipid bilayers. Biochim Biophys Acta. 1971 Apr 13;233(2):420–433. doi: 10.1016/0005-2736(71)90339-7. [DOI] [PubMed] [Google Scholar]
  24. Krämer R., Lambert C., Hoischen C., Ebbighausen H. Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium. Eur J Biochem. 1990 Dec 27;194(3):929–935. doi: 10.1111/j.1432-1033.1990.tb19488.x. [DOI] [PubMed] [Google Scholar]
  25. Krämer R., Lambert C. Uptake of glutamate in Corynebacterium glutamicum. 2. Evidence for a primary active transport system. Eur J Biochem. 1990 Dec 27;194(3):937–944. doi: 10.1111/j.1432-1033.1990.tb19489.x. [DOI] [PubMed] [Google Scholar]
  26. Krämer R. Systems and mechanisms of amino acid uptake and excretion in prokaryotes. Arch Microbiol. 1994;162(1-2):1–13. doi: 10.1007/BF00264366. [DOI] [PubMed] [Google Scholar]
  27. Käs J., Sackmann E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys J. 1991 Oct;60(4):825–844. doi: 10.1016/S0006-3495(91)82117-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lundin A., Richardsson A., Thore A. Continous monitoring of ATP-converting reactions by purified firefly luciferase. Anal Biochem. 1976 Oct;75(2):611–620. doi: 10.1016/0003-2697(76)90116-0. [DOI] [PubMed] [Google Scholar]
  29. Martinac B., Adler J., Kung C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature. 1990 Nov 15;348(6298):261–263. doi: 10.1038/348261a0. [DOI] [PubMed] [Google Scholar]
  30. Milner J. L., Grothe S., Wood J. M. Proline porter II is activated by a hyperosmotic shift in both whole cells and membrane vesicles of Escherichia coli K12. J Biol Chem. 1988 Oct 15;263(29):14900–14905. [PubMed] [Google Scholar]
  31. Porter R. K., Scott J. M., Brand M. D. Choline transport into rat liver mitochondria. Characterization and kinetics of a specific transporter. J Biol Chem. 1992 Jul 25;267(21):14637–14646. [PubMed] [Google Scholar]
  32. Sackmann E. The seventh Datta Lecture. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. FEBS Lett. 1994 Jun 6;346(1):3–16. doi: 10.1016/0014-5793(94)00484-6. [DOI] [PubMed] [Google Scholar]
  33. Schleyer M., Schmid R., Bakker E. P. Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch Microbiol. 1993;160(6):424–431. doi: 10.1007/BF00245302. [DOI] [PubMed] [Google Scholar]
  34. Schreier S., Frezzatti W. A., Jr, Araujo P. S., Chaimovich H., Cuccovia I. M. Effect of lipid membranes on the apparent pK of the local anesthetic tetracaine. Spin label and titration studies. Biochim Biophys Acta. 1984 Jan 11;769(1):231–237. doi: 10.1016/0005-2736(84)90027-0. [DOI] [PubMed] [Google Scholar]
  35. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  36. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shimooka T., Shibata A., Terada H. The local anesthetic tetracaine destabilizes membrane structure by interaction with polar headgroups of phospholipids. Biochim Biophys Acta. 1992 Mar 2;1104(2):261–268. doi: 10.1016/0005-2736(92)90039-o. [DOI] [PubMed] [Google Scholar]
  38. Shoshan-Barmatz V., Zchut S. The interaction of local anesthetics with the ryanodine receptor of the sarcoplasmic reticulum. J Membr Biol. 1993 Apr;133(2):171–181. doi: 10.1007/BF00233797. [DOI] [PubMed] [Google Scholar]
  39. Tempest D. W., Neijssel O. M. Physiological and energetic aspects of bacterial metabolite overproduction. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):169–176. doi: 10.1111/j.1574-6968.1992.tb14036.x. [DOI] [PubMed] [Google Scholar]
  40. Terada H., Shima O., Yoshida K., Shinohara Y. Effects of the local anesthetic bupivacaine on oxidative phosphorylation in mitochondria. Change from decoupling to uncoupling by formation of a leakage type ion pathway specific for H+ in cooperation with hydrophobic anions. J Biol Chem. 1990 May 15;265(14):7837–7842. [PubMed] [Google Scholar]
  41. Villarejo M., Case C. C. envZ mediates transcriptional control by local anesthetics but is not required for osmoregulation in Escherichia coli. J Bacteriol. 1984 Sep;159(3):883–887. doi: 10.1128/jb.159.3.883-887.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES