Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Dec;61(12):4374–4377. doi: 10.1128/aem.61.12.4374-4377.1995

Phenolic Azo Dye Oxidation by Laccase from Pyricularia oryzae

M Chivukula, V Renganathan
PMCID: PMC1388656  PMID: 16535191

Abstract

Laccase oxidation of phenolic azo dyes was examined with a commercially available laccase from Pyricularia oryzae as the model. Methyl-, methoxy-, chloro-, and nitro-substituted derivatives of 4-(4(prm1)-sulfophenylazo)-phenol were examined as substrates for this laccase. Only the substituents on the phenolic ring were changed. Among the dyes examined, only 2-methyl-, 2-methoxy-, 2,3-dimethyl-, 2,6-dimethyl-, 2,3-dimethoxy-, and 2,6-dimethoxy-substituted 4-(4(prm1)-sulfophenylazo)-phenol served as substrates. Preliminary kinetic studies suggest that 2,6-dimethoxy-substituted 4-(4(prm1)-sulfophenylazo)-phenol is the best substrate. Laccase oxidized the 2,6-dimethyl derivative of 4-(4(prm1)-sulfophenylazo)-phenol to 4-sulfophenylhydroperoxide (SPH) and 2,6-dimethyl-1,4-benzoquinone. The 2-methyl- and 2-methoxy-substituted dyes were oxidized to SPH and either 2-methyl- or 2-methoxy-benzoquinone. Six products were formed from laccase oxidation of the 2,6-dimethoxy-substituted dye. Three of them were identified as SPH, 4-hydroxybenzenesulfonic acid, and 2,6-dimethoxybenzoquinone. A mechanism for the formation of benzoquinone and SPH from laccase oxidation of phenolic azo dyes is proposed. This study suggests that laccase oxidation can result in the detoxification of azo dyes.

Full Text

The Full Text of this article is available as a PDF (185.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bollag J. M., Shuttleworth K. L., Anderson D. H. Laccase-mediated detoxification of phenolic compounds. Appl Environ Microbiol. 1988 Dec;54(12):3086–3091. doi: 10.1128/aem.54.12.3086-3091.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chivukula M., Spadaro J. T., Renganathan V. Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry. 1995 Jun 13;34(23):7765–7772. doi: 10.1021/bi00023a024. [DOI] [PubMed] [Google Scholar]
  3. Chung K. T., Cerniglia C. E. Mutagenicity of azo dyes: structure-activity relationships. Mutat Res. 1992 Sep;277(3):201–220. doi: 10.1016/0165-1110(92)90044-a. [DOI] [PubMed] [Google Scholar]
  4. Cripps C., Bumpus J. A., Aust S. D. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol. 1990 Apr;56(4):1114–1118. doi: 10.1128/aem.56.4.1114-1118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goszczynski S., Paszczynski A., Pasti-Grigsby M. B., Crawford R. L., Crawford D. L. New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol. 1994 Mar;176(5):1339–1347. doi: 10.1128/jb.176.5.1339-1347.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoff T., Liu S. Y., Bollag J. M. Transformation of Halogen-, Alkyl-, and Alkoxy-Substituted Anilines by a Laccase of Trametes versicolor. Appl Environ Microbiol. 1985 May;49(5):1040–1045. doi: 10.1128/aem.49.5.1040-1045.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McCann J., Ames B. N. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc Natl Acad Sci U S A. 1976 Mar;73(3):950–954. doi: 10.1073/pnas.73.3.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pasti-Grigsby M. B., Paszczynski A., Goszczynski S., Crawford D. L., Crawford R. L. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Nov;58(11):3605–3613. doi: 10.1128/aem.58.11.3605-3613.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Paszczynski A., Crawford R. L. Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: involvement of veratryl alcohol. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1056–1063. doi: 10.1016/0006-291x(91)90999-n. [DOI] [PubMed] [Google Scholar]
  10. Paszczynski A., Pasti-Grigsby M. B., Goszczynski S., Crawford R. L., Crawford D. L. Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol. 1992 Nov;58(11):3598–3604. doi: 10.1128/aem.58.11.3598-3604.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rafii F., Franklin W., Cerniglia C. E. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol. 1990 Jul;56(7):2146–2151. doi: 10.1128/aem.56.7.2146-2151.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Spadaro J. T., Gold M. H., Renganathan V. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Aug;58(8):2397–2401. doi: 10.1128/aem.58.8.2397-2401.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Spadaro J. T., Renganathan V. Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse Yellow 3 degradation. Arch Biochem Biophys. 1994 Jul;312(1):301–307. doi: 10.1006/abbi.1994.1313. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES