Abstract
As a result of an extensive screening program for the microbial modification of the immunosuppressant FK-506, one culture, Streptomyces rimosus MA187, which specifically catalyzed the C-31 demethylation of FK-506 was identified. Treatment of the biotransforming culture with FK-506 increased demethylase activity 2.4-fold and stabilized the cytochrome P-450 protein. The enzyme responsible for this demethylation (31-O-FK-506 demethylase) was isolated and shown to be a soluble cytoplasmic protein which is constitutively expressed in the cells, which requires NADPH, ferredoxin-NADP(sup+)-reductase, and ferredoxin for activity, and which shows a cytochrome P-450 light absorption characteristic. Carbon monoxide saturation of the enzyme preparation and known mammalian cytochrome P-450 inhibitors such as quinidine HCl, ketoconazole, troleandomycin, and sulfaphenazole abolish the demethylating activity extensively. The purified enzyme is a monomeric protein with a molecular mass of 42 kDa and shows its maximal activity at a pH of 7.4 and an incubation temperature of 34(deg)C. The first 19 N-terminal amino acids in the sequence of the purified protein have been determined, with no cytochrome P-450 match found in the OWL and Swiss-Prot 23 databases. The isolated demethylase is therefore a cytochrome P-450 protein that can be used as a catalyst for the synthesis of 31-O-desmethylFK-506, an important immunosuppressant and a known metabolite of FK-506 metabolism by human liver microsomes.
Full Text
The Full Text of this article is available as a PDF (226.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen T. S., Arison B. H., Wicker L. S., Inamine E. S., Monaghan R. L. Microbial transformation of immunosuppressive compounds. I. Desmethylation of FK506 and immunomycin (FR 900520) by Actinoplanes sp. ATCC 53771. J Antibiot (Tokyo) 1992 Jan;45(1):118–123. doi: 10.7164/antibiotics.45.118. [DOI] [PubMed] [Google Scholar]
- Clark A. M., Hufford C. D. Use of microorganisms for the study of drug metabolism: an update. Med Res Rev. 1991 Sep;11(5):473–501. doi: 10.1002/med.2610110503. [DOI] [PubMed] [Google Scholar]
- Enoch H. G., Strittmatter P. Cytochrome b5 reduction by NADPH-cytochrome P-450 reductase. J Biol Chem. 1979 Sep 25;254(18):8976–8981. [PubMed] [Google Scholar]
- Hildebrandt A., Estabrook R. W. Evidence for the participation of cytochrome b 5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys. 1971 Mar;143(1):66–79. doi: 10.1016/0003-9861(71)90186-x. [DOI] [PubMed] [Google Scholar]
- Iwasaki K., Shiraga T., Nagase K., Tozuka Z., Noda K., Sakuma S., Fujitsu T., Shimatani K., Sato A., Fujioka M. Isolation, identification, and biological activities of oxidative metabolites of FK506, a potent immunosuppressive macrolide lactone. Drug Metab Dispos. 1993 Nov-Dec;21(6):971–977. [PubMed] [Google Scholar]
- Karanam B. V., Vincent S. H., Newton D. J., Wang R. W., Chiu S. H. FK 506 metabolism in human liver microsomes: investigation of the involvement of cytochrome P450 isozymes other than CYP3A4. Drug Metab Dispos. 1994 Sep-Oct;22(5):811–814. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liu J., Albers M. W., Wandless T. J., Luan S., Alberg D. G., Belshaw P. J., Cohen P., MacKintosh C., Klee C. B., Schreiber S. L. Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry. 1992 Apr 28;31(16):3896–3901. doi: 10.1021/bi00131a002. [DOI] [PubMed] [Google Scholar]
- Lovley D. R., Woodward J. C., Chapelle F. H. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature. 1994 Jul 14;370(6485):128–131. doi: 10.1038/370128a0. [DOI] [PubMed] [Google Scholar]
- Pyerin W., Taniguchi H., Horn F., Oesch F., Amelizad Z., Friedberg T., Wolf C. R. Isoenzyme-specific phosphorylation of cytochromes P-450 and other drug metabolizing enzymes. Biochem Biophys Res Commun. 1987 Feb 13;142(3):885–892. doi: 10.1016/0006-291x(87)91496-3. [DOI] [PubMed] [Google Scholar]
- Shafiee A., Chen T. S., Arison B. S., Dumont F. J., Colwell L., Kaplan L. Enzymatic synthesis and immunosuppressive activity of novel desmethylated immunomycins (ascomycins). J Antibiot (Tokyo) 1993 Sep;46(9):1397–1405. doi: 10.7164/antibiotics.46.1397. [DOI] [PubMed] [Google Scholar]
- Shafiee A., Hutchinson C. R. Macrolide antibiotic biosynthesis: isolation and properties of two forms of 6-deoxyerythronolide B hydroxylase from Saccharopolyspora erythraea (Streptomyces erythreus). Biochemistry. 1987 Sep 22;26(19):6204–6210. doi: 10.1021/bi00393a037. [DOI] [PubMed] [Google Scholar]
- Shafiee A., Motamedi H., Chen T. Enzymology of FK-506 biosynthesis. Purification and characterization of 31-O-desmethylFK-506 O:methyltransferase from Streptomyces sp. MA6858. Eur J Biochem. 1994 Oct 15;225(2):755–764. doi: 10.1111/j.1432-1033.1994.00755.x. [DOI] [PubMed] [Google Scholar]
- Starzl T. E., Todo S., Fung J., Demetris A. J., Venkataramman R., Jain A. FK 506 for liver, kidney, and pancreas transplantation. Lancet. 1989 Oct 28;2(8670):1000–1004. doi: 10.1016/s0140-6736(89)91014-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner N. J. Recent advances in the use of enzyme-catalysed reactions in organic synthesis. Nat Prod Rep. 1989 Dec;6(6):625–644. doi: 10.1039/np9890600625. [DOI] [PubMed] [Google Scholar]
- Vincent S. H., Karanam B. V., Painter S. K., Chiu S. H. In vitro metabolism of FK-506 in rat, rabbit, and human liver microsomes: identification of a major metabolite and of cytochrome P450 3A as the major enzymes responsible for its metabolism. Arch Biochem Biophys. 1992 May 1;294(2):454–460. doi: 10.1016/0003-9861(92)90711-5. [DOI] [PubMed] [Google Scholar]