Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Oct;61(10):3556–3561. doi: 10.1128/aem.61.10.3556-3561.1995

Growth of Strain SES-3 with Arsenate and Other Diverse Electron Acceptors

A M Laverman, J S Blum, J K Schaefer, E Phillips, D R Lovley, R S Oremland
PMCID: PMC1388705  PMID: 16535143

Abstract

The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors.

Full Text

The Full Text of this article is available as a PDF (241.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmann D., Roberts A. L., Krumholz L. R., Morel F. M. Microbe grows by reducing arsenic. Nature. 1994 Oct 27;371(6500):750–750. doi: 10.1038/371750a0. [DOI] [PubMed] [Google Scholar]
  2. Cheng C. N., Focht D. D. Production of arsine and methylarsines in soil and in culture. Appl Environ Microbiol. 1979 Sep;38(3):494–498. doi: 10.1128/aem.38.3.494-498.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Culbertson C. W., Strohmaier F. E., Oremland R. S. Acetylene as a substrate in the development of primordial bacterial communities. Orig Life Evol Biosph. 1988;18(4):397–407. doi: 10.1007/BF01808218. [DOI] [PubMed] [Google Scholar]
  4. Gladysheva T. B., Oden K. L., Rosen B. P. Properties of the arsenate reductase of plasmid R773. Biochemistry. 1994 Jun 14;33(23):7288–7293. doi: 10.1021/bi00189a033. [DOI] [PubMed] [Google Scholar]
  5. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ji G., Garber E. A., Armes L. G., Chen C. M., Fuchs J. A., Silver S. Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry. 1994 Jun 14;33(23):7294–7299. doi: 10.1021/bi00189a034. [DOI] [PubMed] [Google Scholar]
  7. Krieg N. R., Hoffman P. S. Microaerophily and oxygen toxicity. Annu Rev Microbiol. 1986;40:107–130. doi: 10.1146/annurev.mi.40.100186.000543. [DOI] [PubMed] [Google Scholar]
  8. Lovley D. R., Greening R. C., Ferry J. G. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl Environ Microbiol. 1984 Jul;48(1):81–87. doi: 10.1128/aem.48.1.81-87.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lovley D. R., Phillips E. J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988 Jun;54(6):1472–1480. doi: 10.1128/aem.54.6.1472-1480.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lovley D. R., Phillips E. J. Reduction of Chromate by Desulfovibrio vulgaris and Its c(3) Cytochrome. Appl Environ Microbiol. 1994 Feb;60(2):726–728. doi: 10.1128/aem.60.2.726-728.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Oremland R. S., Blum J. S., Culbertson C. W., Visscher P. T., Miller L. G., Dowdle P., Strohmaier F. E. Isolation, Growth, and Metabolism of an Obligately Anaerobic, Selenate-Respiring Bacterium, Strain SES-3. Appl Environ Microbiol. 1994 Aug;60(8):3011–3019. doi: 10.1128/aem.60.8.3011-3019.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Oremland R. S., Hollibaugh J. T., Maest A. S., Presser T. S., Miller L. G., Culbertson C. W. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol. 1989 Sep;55(9):2333–2343. doi: 10.1128/aem.55.9.2333-2343.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Oremland R. S., Steinberg N. A., Presser T. S., Miller L. G. In situ bacterial selenate reduction in the agricultural drainage systems of western Nevada. Appl Environ Microbiol. 1991 Feb;57(2):615–617. doi: 10.1128/aem.57.2.615-617.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Steinberg N. A., Oremland R. S. Dissimilatory selenate reduction potentials in a diversity of sediment types. Appl Environ Microbiol. 1990 Nov;56(11):3550–3557. doi: 10.1128/aem.56.11.3550-3557.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wolfe R. S., Penning N. Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol. 1977 Feb;33(2):427–433. doi: 10.1128/aem.33.2.427-433.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES