Abstract
The large-scale release of wild-type or genetically modified bacteria into the environment for control of plant diseases or for bioremediation entails the potential risk of groundwater contamination by these microorganisms. For a model study on patterns of vertical transport of bacteria under field conditions, the biocontrol strain Pseudomonas fluorescens CHA0, marked with a spontaneous resistance to rifampin (CHA0-Rif), was applied to a grass-clover ley plot (rotation grassland) and a wheat plot. Immediately after bacterial application, heavy precipitation was simulated by sprinkling, over a period of 8 h, 40 mm of water containing the mobile tracer potassium bromide and the dye Brilliant Blue FCF to identify channels of preferential flow. One day later, a 150-cm-deep soil trench was dug and soil profiles were prepared. Soil samples were extracted at different depths of the profiles and analyzed for the number of CHA0-Rif cells and the concentration of bromide and Brilliant Blue FCF. Dye coverage in the soil profiles was estimated by image analysis. CHA0 was present at 10(sup8) CFU/g in the surface soil, and 10(sup6) to 10(sup7) CFU/g of CHA0 was detected along macropores between 10 and 150 cm deep. Similarly, the concentration of the tracer bromide along the macropores remained at the same level below 20 cm deep. Dye coverage in lower soil layers was higher in the ley than in the wheat plot. In nonstained parts of the profiles, the number of CHA0-Rif cells was substantially smaller and the bromide concentration was below the detection limit in most samples. We conclude that after heavy rainfall, released bacteria are rapidly transported in large numbers through the channels of preferential flow to deeper soil layers. Under these conditions, the transport of CHA0-Rif is similar to that of the conservative tracer bromide and is affected by cultural practice.
Full Text
The Full Text of this article is available as a PDF (232.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berry D. F., Hagedorn C. Soil and groundwater transport of microorganisms. Biotechnology. 1991;15:57–73. doi: 10.1016/b978-0-409-90199-3.50010-3. [DOI] [PubMed] [Google Scholar]
- Gannon J. T., Manilal V. B., Alexander M. Relationship between Cell Surface Properties and Transport of Bacteria through Soil. Appl Environ Microbiol. 1991 Jan;57(1):190–193. doi: 10.1128/aem.57.1.190-193.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein R. M., Mallory L. M., Alexander M. Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol. 1985 Oct;50(4):977–983. doi: 10.1128/aem.50.4.977-983.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
- Natsch A., Keel C., Pfirter H. A., Haas D., Défago G. Contribution of the Global Regulator Gene gacA to Persistence and Dissemination of Pseudomonas fluorescens Biocontrol Strain CHA0 Introduced into Soil Microcosms. Appl Environ Microbiol. 1994 Jul;60(7):2553–2560. doi: 10.1128/aem.60.7.2553-2560.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]