Abstract
Regulation of nitrilotriacetate (NTA) degradation and expression of NTA monooxygenase (NTA-MO) in the NTA-degrading strain Chelatobacter heintzii ATCC 29600 in continuous culture at a dilution rate of 0.06 h(sup-1) under transient growth conditions when the feed was switched between media containing NTA, glucose, or different mixtures thereof as the sole carbon and energy sources was investigated. A transition from NTA to glucose was accompanied by a rapid loss of NTA-MO. A transition from glucose to NTA resulted in a lag phase of some 25 h until NTA-MO expression started, and approximately 100 h was needed before a steady state for NTA-MO specific activity was reached. This transient lag phase was markedly shortened when mixtures of NTA plus glucose were supplied instead of NTA only; for example, when a mixture of 90% glucose and 10% NTA was used, induction of NTA-MO was detected after 30 min. This suggests a strong positive influence of alternative carbon substrates on the expression of other enzymes under natural environmental conditions. Regulation of NTA-MO expression and the fate of NTA-MO were also studied during starvation of both glucose-grown and NTA-grown cultures. Starvation of NTA-grown cells led to a loss of NTA-MO protein. No synthesis of NTA-MO (derepression) was observed when glucose-grown cells were starved.
Full Text
The Full Text of this article is available as a PDF (250.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. L., Bishop W. E., Campbell R. L. A review of the environmental and mammalian toxicology of nitrilotriacetic acid. Crit Rev Toxicol. 1985;15(1):1–102. doi: 10.3109/10408448509023766. [DOI] [PubMed] [Google Scholar]
- Bally M., Wilberg E., Kühni M., Egli T. Growth and regulation of enzyme synthesis in the nitrilotriacetic acid (NTA)-degrading bacterium Chelatobacter heintzii ATCC 29600. Microbiology. 1994 Aug;140(Pt 8):1927–1936. doi: 10.1099/13500872-140-8-1927. [DOI] [PubMed] [Google Scholar]
- Beck C., von Meyenburg H. K. Enzyme pattern and aerobic growth of Saccharomyces cerevisiae under various degrees of glucose limitation. J Bacteriol. 1968 Aug;96(2):479–486. doi: 10.1128/jb.96.2.479-486.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- CAMPBELL A. Synchronization of cell division. Bacteriol Rev. 1957 Dec;21(4):263–272. doi: 10.1128/br.21.4.263-272.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cripps R. E., Noble A. S. The metabolism of nitrilotriacetate by a pseudomonad. Biochem J. 1973 Dec;136(4):1059–1068. doi: 10.1042/bj1361059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egli T. (An)aerobic breakdown of chelating agents used in household detergents. Microbiol Sci. 1988 Feb;5(2):36–41. [PubMed] [Google Scholar]
- Focht D. D., Joseph H. A. Bacterial degradation of nitrilotriacetic acid (NTA). Can J Microbiol. 1971 Dec;17(12):1553–1556. doi: 10.1139/m71-247. [DOI] [PubMed] [Google Scholar]
- Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
- Gottschal J. C. Growth kinetics and competition--some contemporary comments. Antonie Van Leeuwenhoek. 1993;63(3-4):299–313. doi: 10.1007/BF00871225. [DOI] [PubMed] [Google Scholar]
- Harder W., Dijkhuizen L. Strategies of mixed substrate utilization in microorganisms. Philos Trans R Soc Lond B Biol Sci. 1982 Jun 11;297(1088):459–480. doi: 10.1098/rstb.1982.0055. [DOI] [PubMed] [Google Scholar]
- Jenal-Wanner U., Egli T. Anaerobic degradation of nitrilotriacetate (NTA) in a denitrifying bacterium: purification and characterization of the NTA dehydrogenase-nitrate reductase enzyme complex. Appl Environ Microbiol. 1993 Oct;59(10):3350–3359. doi: 10.1128/aem.59.10.3350-3359.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KJELDGAARD N. O., MAALOE O., SCHAECHTER M. The transition between different physiological states during balanced growth of Salmonella typhimurium. J Gen Microbiol. 1958 Dec;19(3):607–616. doi: 10.1099/00221287-19-3-607. [DOI] [PubMed] [Google Scholar]
- Kaspar von Meyenburg H. Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch Mikrobiol. 1969;66(4):289–303. doi: 10.1007/BF00414585. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MANDELSTAM J. The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bacteriol Rev. 1960 Sep;24(3):289–308. doi: 10.1128/br.24.3.289-308.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macaskie L. E. The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit Rev Biotechnol. 1991;11(1):41–112. doi: 10.3109/07388559109069183. [DOI] [PubMed] [Google Scholar]
- Münster U. Concentrations and fluxes of organic carbon substrates in the aquatic environment. Antonie Van Leeuwenhoek. 1993;63(3-4):243–274. doi: 10.1007/BF00871222. [DOI] [PubMed] [Google Scholar]
- Münster U. Concentrations and fluxes of organic carbon substrates in the aquatic environment. Antonie Van Leeuwenhoek. 1993;63(3-4):243–274. doi: 10.1007/BF00871222. [DOI] [PubMed] [Google Scholar]
- Pine M. J. Turnover of intracellular proteins. Annu Rev Microbiol. 1972;26:103–126. doi: 10.1146/annurev.mi.26.100172.000535. [DOI] [PubMed] [Google Scholar]
- Schneider R. P., Zürcher F., Egli T., Hamer G. Determination of nitrilotriacetate in biological matrices using ion exclusion chromatography. Anal Biochem. 1988 Sep;173(2):278–284. doi: 10.1016/0003-2697(88)90190-x. [DOI] [PubMed] [Google Scholar]
- Standing C. N., Fredrickson A. G., Tsuchiya H. M. Batch- and continuous-culture transients for two substrate systems. Appl Microbiol. 1972 Feb;23(2):354–359. doi: 10.1128/am.23.2.354-359.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiedje J. M., Mason B. B., Warren C. B., Malec E. J. Metabolism of nitrilotriacetate by cells of Pseudomonas species. Appl Microbiol. 1973 May;25(5):811–818. doi: 10.1128/am.25.5.811-818.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uetz T., Schneider R., Snozzi M., Egli T. Purification and characterization of a two-component monooxygenase that hydroxylates nitrilotriacetate from "Chelatobacter" strain ATCC 29600. J Bacteriol. 1992 Feb;174(4):1179–1188. doi: 10.1128/jb.174.4.1179-1188.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wanner U., Egli T. Dynamics of microbial growth and cell composition in batch culture. FEMS Microbiol Rev. 1990 Mar;6(1):19–43. doi: 10.1111/j.1574-6968.1990.tb04084.x. [DOI] [PubMed] [Google Scholar]
- Wanner U., Kemmler J., Weilenmann H. U., Egli T., el-Banna T., Auling G. Isolation and growth of a bacterium able to degrade nitrilotriacetic acid under denitrifying conditions. Biodegradation. 1990;1(1):31–41. doi: 10.1007/BF00117049. [DOI] [PubMed] [Google Scholar]