Abstract
We report here a biochemical study of resistance to azole antifungal agents in a field isolate (S-27) of a fungal phytopathogen. Isolates of Septoria tritici were compared in vitro, and their responses reflected that observed in the field, with S-27 exhibiting resistance relative to RL2. In untreated cultures, both RL2 and S-27 contained isomers of ergosterol and ergosta-5,7-dienol, although in differing concentrations. Under azole treatment, this phytopathogen exhibited a response similar to that of other pathogenic fungi, with a reduction in desmethyl sterols and an accumulation of 14(alpha)-methyl sterols, indicative of inhibition of the P450-mediating sterol 14(alpha)-demethylase. Growth arrest was attributed to the reduction of ergosterol combined with an accumulation of nonutilizable sterols. Strain S-27 exhibited an azole-resistant phenotype which was correlated with decreased cellular content of azole.
Full Text
The Full Text of this article is available as a PDF (225.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoyama Y., Yoshida Y., Sato R. Yeast cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation. II. Lanosterol metabolism by purified P-450(14)DM and by intact microsomes. J Biol Chem. 1984 Feb 10;259(3):1661–1666. [PubMed] [Google Scholar]
- Ballard S. A., Ellis S. W., Kelly S. L., Troke P. F. A novel method for studying ergosterol biosynthesis by a cell-free preparation of Aspergillus fumigatus and its inhibition by azole antifungal agents. J Med Vet Mycol. 1990;28(4):335–344. [PubMed] [Google Scholar]
- Bozzette S. A., Larsen R. A., Chiu J., Leal M. A., Tilles J. G., Richman D. D., Leedom J. M., McCutchan J. A. Fluconazole treatment of persistent Cryptococcus neoformans prostatic infection in AIDS. Ann Intern Med. 1991 Aug 15;115(4):285–286. doi: 10.7326/0003-4819-115-4-285. [DOI] [PubMed] [Google Scholar]
- Gallay J., De Kruijff B. Correlation between molecular shape and hexagonal HII phase promoting ability of sterols. FEBS Lett. 1982 Jun 21;143(1):133–136. doi: 10.1016/0014-5793(82)80289-5. [DOI] [PubMed] [Google Scholar]
- Hitchcock C. A., Barrett-Bee K. J., Russell N. J. The lipid composition of azole-sensitive and azole-resistant strains of Candida albicans. J Gen Microbiol. 1986 Sep;132(9):2421–2431. doi: 10.1099/00221287-132-9-2421. [DOI] [PubMed] [Google Scholar]
- Hitchcock C. A. Resistance of Candida albicans to azole antifungal agents. Biochem Soc Trans. 1993 Nov;21(4):1039–1047. doi: 10.1042/bst0211039. [DOI] [PubMed] [Google Scholar]
- Hollomon D. W. Resistance to azole fungicides in the field. Biochem Soc Trans. 1993 Nov;21(4):1047–1051. doi: 10.1042/bst0211047. [DOI] [PubMed] [Google Scholar]
- Joseph-Horne T., Hollomon D., Loeffler R. S., Kelly S. L. Cross-resistance to polyene and azole drugs in Cryptococcus neoformans. Antimicrob Agents Chemother. 1995 Jul;39(7):1526–1529. doi: 10.1128/aac.39.7.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joseph-Horne T., Manning N. J., Hollomon D., Kelly S. L. Defective sterol delta 5(6) desaturase as a cause of azole resistance in Ustilago maydis. FEMS Microbiol Lett. 1995 Mar 15;127(1-2):29–34. doi: 10.1111/j.1574-6968.1995.tb07445.x. [DOI] [PubMed] [Google Scholar]
- Kelly S. L., Kenna S., Arnoldi A., Kelly D. E. Studies on azole-induced cell death in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1994 Jan 15;115(2-3):219–222. doi: 10.1111/j.1574-6968.1994.tb06641.x. [DOI] [PubMed] [Google Scholar]
- Kelly S. L., Rowe J., Watson P. F. Molecular genetic studies on the mode of action of azole antifungal agents. Biochem Soc Trans. 1991 Aug;19(3):796–798. doi: 10.1042/bst0190796. [DOI] [PubMed] [Google Scholar]
- Nes W. D., Janssen G. G., Crumley F. G., Kalinowska M., Akihisa T. The structural requirements of sterols for membrane function in Saccharomyces cerevisiae. Arch Biochem Biophys. 1993 Feb 1;300(2):724–733. doi: 10.1006/abbi.1993.1100. [DOI] [PubMed] [Google Scholar]
- Norman A. W., Spielvogel A. M., Wong R. G. Polyene antibiotic - sterol interaction. Adv Lipid Res. 1976;14:127–170. [PubMed] [Google Scholar]
- Prasad R., De Wergifosse P., Goffeau A., Balzi E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet. 1995 Mar;27(4):320–329. doi: 10.1007/BF00352101. [DOI] [PubMed] [Google Scholar]
- Rodriguez R. J., Low C., Bottema C. D., Parks L. W. Multiple functions for sterols in Saccharomyces cerevisiae. Biochim Biophys Acta. 1985 Dec 4;837(3):336–343. doi: 10.1016/0005-2760(85)90057-8. [DOI] [PubMed] [Google Scholar]
- Stark G. R. Cancer chemotherapy. Progress in understanding multidrug resistance. Nature. 1986 Dec 4;324(6096):407–408. doi: 10.1038/324407a0. [DOI] [PubMed] [Google Scholar]
- Watson P. F., Rose M. E., Ellis S. W., England H., Kelly S. L. Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1170–1175. doi: 10.1016/0006-291x(89)91792-0. [DOI] [PubMed] [Google Scholar]
- Watson P. F., Rose M. E., Kelly S. L. Isolation and analysis of ketoconazole resistant mutants of Saccharomyces cerevisiae. J Med Vet Mycol. 1988 Jun;26(3):153–162. doi: 10.1080/02681218880000231. [DOI] [PubMed] [Google Scholar]
- Woestenborghs R., Lorreyne W., Heykants J. Determination of itraconazole in plasma and animal tissues by high-performance liquid chromatography. J Chromatogr. 1987 Jan 23;413:332–337. doi: 10.1016/0378-4347(87)80249-9. [DOI] [PubMed] [Google Scholar]
- Woods R. A. Nystatin-resistant mutants of yeast: alterations in sterol content. J Bacteriol. 1971 Oct;108(1):69–73. doi: 10.1128/jb.108.1.69-73.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- vanden Bossche H., Marichal P., Odds F. C., Le Jeune L., Coene M. C. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother. 1992 Dec;36(12):2602–2610. doi: 10.1128/aac.36.12.2602. [DOI] [PMC free article] [PubMed] [Google Scholar]
